
- Master Thesis -

Adaptive Local Planning for Improved

Pose Certainty in Active SLAM

Robin Dominic Steiger
23. January 2025

University of Freiburg
Department of Computer Science

Chair of Computer Networks and Telematics
Prof. Dr. Christian Schindelhauer

in cooperation with

Universidade de Lisboa
Instituto Superior Técnico

Institute for Systems and Robotics
Prof. Dr. Pedro Manuel Urbano de Almeida Lima



Candidate

Robin Dominic Steiger

Matrikel number

4146672

Working period

21. 08. 2024 – 23. 01. 2025

First Examiner

Prof. Dr. Christian Schindelhauer

Second Examiner

Prof. Dr. Pedro Manuel Urbano de Almeida Lima

Supervisors

AIS Freiburg: Dr. Lukas Luft, Dulce Adriana Gómez Rosal;
ISR Lisboa: Rui Bettencourt, Rodrigo Serra;
CoNe Freiburg: Sneha Mohanty



Acknowledgments
I would like to express my deepest gratitude to all those who supported me, throughout
the process of writing this thesis:

ISR My heartfelt thanks go to Prof. Pedro Lima for inviting me to the institute
and supporting me on many levels. I am also very grateful to the entire SocRob
team for receiving me with open arms. In particular, I want to thank Rodrigo, who
inspired the whole team with his kindness and leadership; Rui, for lots of invaluable,
professional feedback and brainstorming sessions; and of course, Bobby and all
the other team members who helped make my time at ISR both productive and
memorable.

CoNe I would like to thank Prof. Christian Schindelhauer for his calm guidance
and steady support before and throughout my stay in Lisbon. I am also grateful to
my supervisor, Sneha, for her warm meetings and exceptional advice

AIS/RLL My sincere appreciation goes to the AIS/RLL group, who introduced me
to the field of robotics and continued to support me ever since. I owe special thanks
to Adriana, for her warm-hearted supervision; Lukas, who shared his research ideas
and always believed in me; José, whose code provided a solid foundation for this
project; Prof. Abhinav Valada, for his motivating project review that encouraged
me.

Since we are not robots, emotional support is no less important. I thank my entire
family for standing by me at every stage of my studies. I am deeply grateful to
Caué, whose faithful friendship and sunny personality were a great support and
perfect distraction from work. And to all my other friends for being a steady source
of comfort and love.

Thank you for reading this emotional note of gratitude. Now, let’s delve into the scientific
part...

3



Abstract
This thesis addresses the challenge of autonomous navigation in unknown environments
while concurrently actively enhancing the accuracy of Simultaneous Localization and
Mapping. It introduces an advanced modification to the Dynamic Window Approach
Planner within the Robot Operating System, designed to dynamically balance goal-
directed navigation with essential pose improvement actions.

The core innovation lies in the planner’s ability to evaluate and modify the trajectory based
on real-time pose certainty, which is assessed through a novel pose certainty approximation
method leveraging an advanced map representation. This adaptive mechanism allows
the planner to scale the influence of pose improvement actions in response to varying
levels of localization certainty, thereby optimizing navigation efficiency and reliability.

Extensive evaluations in simulated and real-world settings demonstrate that our approach
notably improves navigation accuracy in unknown environments. The results indicate
significant implications for service robotics and similar sectors which require robust
autonomous navigation, demonstrating the practical and efficient nature of the integrated
approach in handling the dual objectives of achieving navigation goals while ensuring
high localization accuracy.

4



Contents
1 Introduction 10

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 14
2.1 Simultaneous Localization and Mapping . . . . . . . . . . . . . . . . . . . 14
2.2 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Map Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Entropy in Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Pose Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 ROS Navigation Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Local Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 State-of-the-Art 31
3.1 Active SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Approaches in RoboCup@Home . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Towards a Combined Approach . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Adaptive Local Planning for Improved Pose Certainty in Active SLAM 33
4.1 Pose Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Strategies for Pose Improvement . . . . . . . . . . . . . . . . . . . 34
4.1.2 The new PoseBoost cost function . . . . . . . . . . . . . . . . . . . 36

4.2 Pose Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Current Approach in GMapping . . . . . . . . . . . . . . . . . . . 39
4.2.2 Limitations and Rationale for Improvement . . . . . . . . . . . . . 39
4.2.3 Review of Alternative Approaches . . . . . . . . . . . . . . . . . . 40
4.2.4 Expected Map Mean Information . . . . . . . . . . . . . . . . . . . 41

4.3 Balancing Goal-Directed Navigation and Pose Improvement . . . . . . . . 47
4.3.1 System and Variable Analysis . . . . . . . . . . . . . . . . . . . . . 48

5



4.3.2 Adaptive Weighting Mechanism . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Managing conflicting objectives . . . . . . . . . . . . . . . . . . . . 50
4.3.4 Final PoseBoost cost function Output . . . . . . . . . . . . . . . . 51
4.3.5 Full DWA Optimization Formulation . . . . . . . . . . . . . . . . . 52

5 Implementation 53
5.1 System Configuration and Parameter Integration . . . . . . . . . . . . . . 53
5.2 Pose Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 GMapping Framework and Requirements . . . . . . . . . . . . . . 54
5.2.2 Implementation of Components . . . . . . . . . . . . . . . . . . . . 55

5.3 Pose Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 GMapping Framework and Overview of Modifications . . . . . . . 60
5.3.2 Implementation of the New Approach . . . . . . . . . . . . . . . . 61

6 Experiments and Evaluation 64
6.1 Comparison of Planning Strategies . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Testing Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusion and Future Work 75
7.1 Realization of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Challenges and Limitations of the Study . . . . . . . . . . . . . . . . . . . 76
7.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Appendices 79
8.1 Remaining Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Experiment Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3 Particles and Maps Service . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 89

6



Acronyms
DWA Dynamic Window Approach. 12, 28, 35, 36, 38, 47–50, 52–54, 56, 64, 73–78

EM Expected Map (Average Map). 23, 24, 41

EMMI Expected Map Mean Information. 23–25, 40–42, 44–47, 49, 51, 53, 60, 61, 65, 70,
73, 75, 80, 81

FMP Full Map Posterior. 19, 20, 42, 43, 45, 47, 53, 61, 63, 68, 78

GM GMapping. 17, 20, 36, 39, 40, 43, 46, 47, 55, 56, 60–62, 64, 65, 69, 74, 75

ISR Institute For Systems and Robotics. 3, 10, 66, 69, 79, 80

OGM Occupancy Grid Map. 17–19, 36, 37, 41, 55, 61, 63

PBF PoseBoost cost function. 36–38, 47–51, 53–56, 59, 64, 73, 74, 76, 77

RBPF Rao-Blackwellized Particle Filters. 15–17, 20, 23, 32, 40, 73

ROS Robot Operating System. 17, 25, 26, 35, 39, 53, 54, 63, 68, 81

RViz ROS Visualization. 58, 59, 62, 63

SLAM Simultaneous Localization and Mapping. 10, 12–20, 31, 32, 34, 36, 40, 60, 62, 63,
75, 77

7



List of Figures
1 ROS navigation stack - Overview . . . . . . . . . . . . . . . . . . . . . . . 26

2 Balancing Mechanism - Overview . . . . . . . . . . . . . . . . . . . . . . . 33
3 EMMI entropy calculation process - Flowchart . . . . . . . . . . . . . . . 41
4 FMP vs. Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5 Low and High EMMI Distributions - Comparison . . . . . . . . . . . . . . 46
6 PBF Balancing Mechanism - Overview . . . . . . . . . . . . . . . . . . . . 47

7 DWA Interaction - Overview . . . . . . . . . . . . . . . . . . . . . . . . . 54
8 New Functions in DWA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9 PBF RViz Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10 PBF Cell Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
11 GMapping - Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
12 New GMapping Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
13 GMapping Particle Publisher . . . . . . . . . . . . . . . . . . . . . . . . . 62
14 GMapping Averaged Map Publisher . . . . . . . . . . . . . . . . . . . . . 63

15 Test Environment – ISR Testbed . . . . . . . . . . . . . . . . . . . . . . . 66
16 Test Environment – Restaurant Scenario . . . . . . . . . . . . . . . . . . . 67
17 Test Environment – Subway Station . . . . . . . . . . . . . . . . . . . . . 69
18 Positional Error – Real World . . . . . . . . . . . . . . . . . . . . . . . . . 71
19 Failure Rate & Distance Traveled – Real World . . . . . . . . . . . . . . . 71
20 Positional Error – Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 72
21 Failure Rate & Distance Traveled – Simulation . . . . . . . . . . . . . . . 72

22 Final Error & Required Time – Real World . . . . . . . . . . . . . . . . . 79
23 Orientation Error – Real World . . . . . . . . . . . . . . . . . . . . . . . . 80
24 Final Error & Required Time – Simulation . . . . . . . . . . . . . . . . . 80
25 Orientation Error & EMMI – Simulation . . . . . . . . . . . . . . . . . . . 81

8



List of Algorithms
1 Particle Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Simplified ROS Navigation Stack Loop . . . . . . . . . . . . . . . . . . . . 27
3 DWA Planner with Cost Functions . . . . . . . . . . . . . . . . . . . . . . 29

List of Configurations
8.1 local_planner.yaml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 move_base.yaml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3 gmapping.yaml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4 Particle and Map Service Output . . . . . . . . . . . . . . . . . . . . . 84

9



1 Introduction

1.1 Motivation

Simultaneous Localization and Mapping (SLAM) is a foundational problem in robotics,
enabling autonomous systems to operate in previously unknown environments by esti-
mating both their pose and a map of the surroundings. Traditionally, this task is treated
as a standalone objective. However, in scenarios where a robot has to navigate to a
specific goal position in an unmapped area, a second imperative arises: to reach the
target efficiently without compromising pose accuracy.

This dual objective, balancing precise pose estimation with effective goal-directed naviga-
tion, presents significant challenges. Achieving this balance requires intelligent decision-
making to prioritize when to focus on pose improvement and when to advance toward
the goal.

The genesis of this research came from experiences gained during an internship with the
SocRob@Home team [Lisboa, 2025] at the Institute For Systems and Robotics (ISR).
Their work focuses on creating assistive robot technologies for domestic applications,
which are tested in environments such as RoboCup@Home [2024], a prominent platform
for advancing service-robot capabilities. One key scenario of this competition is the
Restaurant Task [Hart et al., 2024], where robots must serve clients in an unfamiliar
environment relying solely on real-time data, without the benefit of a preexisting map.
Competing teams often encounter critical issues, such as navigation failures or difficulties
returning to the designated start location, due to inaccuracies in pose estimation.

Beyond research competitions, this problem extends to everyday life. As robots increas-
ingly assist with household tasks like delivering items, cleaning, or supporting elder
care. Failures in mapping or localization can undermine their usefulness and reliability.
Ensuring that robots can navigate safely and efficiently in new or changing environments
is essential not only for the Restaurant Task, but also for broader integration of robotics
into homes, hospitals, and public spaces.

10



Motivated by these limitations of existing autonomous systems, this thesis focuses on
enhancing robotic navigation and localization strategies without requiring additional
or specialized hardware. By strategically balancing movement toward the goal with
selective re-localization actions, robots can achieve higher robustness and a lower risk of
navigation failure, crucial capabilities for improving autonomous systems.

1.2 Research Objectives

Our research estimates the pose certainty in real-time to dynamically balance the two
objectives and adjust the robot’s path accordingly, enhancing both the robustness and
reliability of autonomous systems in complex environments. Such advancements are
crucial for applications where robots must operate independently in unknown areas, such
as in disaster response, space exploration, and service robotics.

The overall goal of this thesis is to refine the capabilities of autonomous robots navigating
accurately to a goal in unknown environments. To achieve this, the following specific
research objectives have been identified:

1. Pose Estimation Enhancement via a local Planner:
Modify the local planner to effectively improve the certainty of the pose, particularly
in unknown or dynamic environments.

2. Real-Time Pose Accuracy Measurement:
Develop and integrate real-time metrics to assess the accuracy of the estimation of
the pose. This metric will facilitate signaling when strategic re-localizations are
essential to maintain navigational precision.

3. Balanced Navigation Strategy:
Create an algorithmic enhancement to balance the dual imperatives of reaching
navigational goals and enhancing pose accuracy. The enhancement will allow
adaptive trajectory adjustments based on real-time pose accuracy evaluations,
ensuring optimal navigation decisions that respond to environmental uncertainties.

11



1.3 Contributions

This thesis aims to advance the field of robotics and Simultaneous Localization and
Mapping by addressing key challenges in autonomous navigation through enhanced
pose estimation, mapping accuracy, and adaptive planning. The primary anticipated
contributions are as follows:

• Enhanced SLAM-GMapping Algorithm:
Introducing key extensions to SLAM-GMapping, an implementation of the Fast
SLAM 2.0 algorithm for ROS, to strengthen pose certainty estimation. These
enhancements incorporate advanced mapping techniques to achieve a more reliable
pose estimation and more accurate environmental representation.

• Dynamic Window Approach Planner Enhancement:
Modifying the Dynamic Window Approach (DWA) planner by including a new
critic that actively promotes revisiting actions and loop closures to improve the
pose estimate. This modification aims to dynamically balance the trade-off between
efficient path following and necessary pose corrections, based on a real-time pose
certainty estimation, thus enabling the robot to maintain high pose accuracy while
efficiently reaching its goals.

• Experimental Validation and Practical Applications:
The proposed modifications and methodologies will be validated through comprehen-
sive experiments in both simulated and real-world environments. The experiments
are expected to demonstrate enhancements in navigation accuracy, a reduction in
pose entropy, and the effectiveness of entropy-based decision-making within the
local planning process.

1.4 Thesis Structure

The thesis is organized in eight chapters. Here is a brief overview of each chapter:

• Chapter 1: Introduction
This chapter presents the motivation, objectives, and contributions of the research.
It outlines the real-life problem that inspired the study and introduces the structure
of the document.

12



• Chapter 2: Background
Provides technical details on the foundational concepts and technologies used in
this research, including Simultaneous Localization and Mapping principles, the
Dynamic Window Approach, and entropy metrics; so the thesis can be understood
without requiring extensive external references.

• Chapter 3: State-of-the-Art
Reviews previous research related to this study, approaches trying to combine
navigation with SLAM and applied strategies in the RoboCup@Home problem,
establishing the context and background for the innovations proposed in this thesis.

• Chapter 4: Adaptive Local Planning for Improved Pose Certainty in
Active SLAM
This chapter serves as the core of the thesis, detailing the strategies, concepts, and
algorithms developed to balance goal-directed navigation with pose improvement.
It provides an in-depth explanation of the methods used, the rationale behind their
design, and the dynamic decision-making processes.

• Chapter 5: Implementation
Details the modifications made to the existing framework and navigation components
to implement the concepts discussed in the previous chapter, along with the addition
of new functionalities.

• Chapter 6: Experiments and Evaluation
Presents the experimental setup, methodology, and results of the testing performed
in both simulated and real-world environments, providing a critical analysis of the
system’s performance.

• Chapter 7: Conclusion and Future Work
Summarizes the findings of this thesis, discusses the implications of the research,
and suggests areas for further study and potential improvements.

• Chapter 8: Appendices
Contains supplementary material not included in the dissertation body text.

13



2 Background
This chapter provides a brief introduction to the various algorithms, concepts, and
software packages leveraged in our research. The focus is on summarizing the essential
aspects of each method used, to establish the necessary notation, and to ensure the
document is self-sufficient.

2.1 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in robotics and
computer science. It involves enabling a robot or autonomous vehicle to simultaneously
map an unknown environment while estimating its pose within that environment. This
dual challenge is crucial for autonomous navigation in various applications, including
self-driving cars, unmanned aerial vehicles, and mobile robots operating in dynamic
environments.

SLAM algorithms can be generally divided into two main categories: passive SLAM and
active SLAM [Cadena et al., 2016].

In traditional passive SLAM, the robot’s task is to map and localize within an environment
using available sensor and odometry data, following a pre-defined or operator-controlled
trajectory [Ahmed et al., 2023]. The focus in passive SLAM is to accurately estimate the
pose of the robot and to build a map without automatically influencing the movement
strategy to improve these estimates.

Active SLAM, by contrast, integrates decision-making mechanisms that allow the robot
to autonomously control its path to achieve specific goals, such as exploring unknown
regions or minimizing uncertainty in its pose or map estimates. According to Thrun et al.,
active SLAM leverages information gathering strategies to make navigation decisions
that improve both localization accuracy and map quality by balancing exploration and
exploitation.

14



Most research relies on information-theoretic approaches, such as maximizing the expected
information gain or minimizing the expected uncertainty [Ahmed et al., 2023]. These
methods use metrics such as entropy or mutual information to quantify the value of
potential actions. For example, a common approach is to use the Bayesian information
criterion to evaluate and select the most informative actions [Sim and Roy, 2005].

2.2 Particle Filters

Sequential Monte Carlo methods, commonly referred to as Rao-Blackwellized Particle
Filters (RBPF), are extensively employed in SLAM to perform probabilistic estimation
of states. RBPFs represents the posterior distribution of the robot’s state (position and
orientation) using a set of weighted particles. Each particle represents a potential state
hypothesis, and the weights correspond to the likelihood of the observed data given
that state. Each particle possesses a pose trajectory and a map estimate [Thrun et al.,
2005].

The algorithm, as visualized in Algorithm 1, proceeds through three main steps [Stachniss,
2012b]:

1. Prediction: The particles are propagated according to the motion model, incorpo-
rating the robot’s control inputs and noise to simulate motion uncertainty.

2. Update: The weights of the particles are updated on the basis of the likelihood
of the observed sensor data, given each particle’s predicted state. This typically
involves computing the measurement likelihood using a sensor model.

3. Resampling: Particles with low weights are discarded and new particles are
sampled from the high-weight particles, allowing the filter to focus on the most
probable states.

RBPFs are particularly well-suited for SLAM as they can represent complex, non-Gaussian
distributions and handle multi-modal distributions, which are common in real-world
environments [Doucet et al., 2000].

15



Algorithm 1 Particle Filter Algorithm

1: Input: Particle set Xt−1 = {x[i]
t−1, w

[i]
t−1}N

i=1, control input ut, sensor observation zt

2: for i = 1 to N do
3: Prediction: Propagate each particle x[i]

t−1 according to the motion model:

x
[i]
t ∼ p(xt|x[i]

t−1, ut)

4: end for
5: for i = 1 to N do
6: Update: Update weight w[i]

t of particle based on the likelihood of observation zt:

w
[i]
t = p(zt|x[i]

t )

7: end for
8: Resampling: Normalize the weights w[i]

t and resample N particles from the current
set, favoring particles with higher weights.

9: Output: Updated particle set Xt−1 = {x[i]
t , w

[i]
t }N

i=1

Fast SLAM 2.0

While particle filters handle the global state estimation, it is often necessary to maintain
and update feature-level information within the environment. To address this, methods
commonly incorporate variants of the Extended Kalman Filter (EKF), a well-known
estimator used for nonlinear state estimation [Ribeiro and Ribeiro, 2004].

One notable approach that combines RBPF for pose estimation with EKFs for landmark
mapping is FastSLAM 2.0 [Montemerlo and Thrun, 2007]. This method factors the
SLAM problem into separate components, robotic trajectory estimation and feature-based
mapping, updated incrementally and efficiently. By maintaining EKFs for individual map
features within each particle, it achieves computational tractability even in large-scale,
complex environments.

16



GMapping

GMapping (GM) is a widely used RBPF-based SLAM implementation for the popular
open-source framework Robot Operating System (ROS) (see ROS Wiki [2018a]). Drawing
on principles similar to those in approaches like FastSLAM 2.0. GM uses RBPFs for the
robot trajectory estimation and integrates feature-based updating techniques into an
occupancy grid mapping framework. This setup enables a robot to create a 2D Occupancy
Grid Map (OGM) (see section 2.3) of its environment while simultaneously estimating
its pose.

Designed to work with laser range finders and odometry data, GM is suitable for a wide
range of robotic platforms. Its robustness, computational efficiency, and accuracy have
made it a popular choice for SLAM in various applications.

2.3 Map Representation

In SLAM, several types of map representation are commonly used, each suited to different
application needs. These include grid cell maps, feature-based maps, and topological
maps [Thrun et al., 2005].

Occupancy Grid Map

A prevalent map representation used in RBPF is the Occupancy Grid Map (OGM). It
represents the environment as a grid of cells, where each cell stores a value that indicates
the probability that the cell is occupied by an obstacle. This approach enables efficient
storage and retrieval of spatial occupancy information, facilitating real-time updates and
integration with sensor data.

The map is constructed by dividing the environment into a uniform grid, with the state of
each cell (occupied or free) estimated using sensor measurements (e.g., laser scans) and the
robot’s pose. The probability of a cell ci being occupied, denoted p(ci = occ | z1:t, x1:t),
is calculated based on observations z1:t and robot poses x1:t up to the current time t.

17



Occupancy Probability Calculation
The probability of occupancy for each cell can be computed using the recursive Bayesian
update [Stachniss, 2012a]:

p(ci | z1:t, x1:t) = p(zt | ci, xt)p(ci | z1:t−1, x1:t−1)
p(zt | z1:t−1, x1:t)

(1)

where:

• p(ci | z1:t, x1:t) represents the posterior probability indicating that the cell ci is
occupied, given all measurements z1:t and poses x1:t up to time t.

• p(zt | ci, xt) is the likelihood of observing zt given the pose of the robot xt and the
occupancy state of ci.

• p(ci | z1:t−1, x1:t−1) is the prior probability of occupancy for ci based on previous
observations and poses.

• p(zt | z1:t−1, x1:t) is a normalizing factor to ensure that probabilities sum up to 1.

To facilitate efficient computations, the log-odds representation is often used. Defining
the log-odds of occupancy lij as:

lij = ln
(

p(ci = occ | z1:t, x1:t)
1 − p(ci = occ | z1:t, x1:t)

)
(2)

The formula to update the occupancy probability can be simplified to:

lij = lij + ln
(
p(zt | ci = occ, xt)
p(zt | ci = free, xt)

)
(3)

where:

• lij is the updated log-odds of occupancy for cell ci.
• p(zt | ci = occ, xt) and p(zt | ci = free, xt) are the probabilities of observing zt given

the robot’s pose xt and the occupancy or free state of ci.

The log-odds update method simplifies the occupancy calculation and is widely used
due to its computational efficiency. The simplicity and efficiency of OGMs make them
a standard choice for grid-based SLAM applications, as they support straightforward
integration of sensor data and effective representation of occupied and free areas in the
environment [Thrun et al., 2005, Elfes, 1989].

18



Full Map Posterior Maps

The advanced map representation, introduced by Luft et al. [2017], uses Full Map
Posterior (FMP). Whereas traditional OGMs only indicate the probability of a cell
being occupied, FMP leverages state-of-the-art beam-based lidar models to provide full
posterior distributions about the certainty of the belief.

FMPs aim to determine the full posterior distribution over all possible maps given the
sensor data, rather than just computing the most likely map. This approach preserves
information on the certainty of the map estimates, which is typically lost in traditional
mapping methods. In the case of small structures or low map resolution, FMP maps
can provide significantly more information. For example, when the probability of a cell
being occupied is 50% and there are many observations, the likelihood of the cell being
partially occupied is high.

To calculate the full posteriors, Luft et al. proposes two different models: the reflection
model and the decay-rate model. Both models only need to store two parameters
per cell and are able to create closed-form solutions for these posteriors without any
significant additional computational costs, thus greatly improving the performance of
SLAM algorithms. For simplicity, the following section introduces only the reflection
model.

Reflection Model

The reflection model represents each cell in the map based on its probability of reflecting
an incident laser beam. This approach models the probability of reflection µi of a
given map cell i using a posterior distribution, capturing the uncertainty inherent in the
mapping process.

The posterior distribution for µi is defined as a Beta distribution:

bel(µi) ∝ µHi
i (1 − µi)Mip(µi), (4)

where:

• Hi denotes the number of times a laser beam was reflected in cell i (hits),
• Mi represents the number of times the beam passed through the cell without reflection

(misses),
• p(µi) is the prior distribution of the reflection probability.

19



If the prior p(µi) is modeled as Beta(α, β), the posterior distribution can be expressed
as:

bel(µi) = Beta(Hi + α,Mi + β). (5)

This formulation allows for closed-form computation of the posterior distribution, requiring
no additional computational complexity compared to traditional maximum likelihood
methods. This property makes it particularly suitable for real-time SLAM applications
[Luft et al., 2017].

FMPMapping
Building upon the concepts introduced in Full Map Posterior Maps, a modified version
of the GM package, known as FMPMapping, has been developed by Arce y de la Borbolla
[2021]. This implementation integrates the FMP distributions, allowing a more accurate
representation of the uncertainty of the environment.

2.4 Entropy in Particle Filters

Entropy measures uncertainty or randomness within a system [Tse, 2022]. In the context
of SLAM, entropy is used to quantify the uncertainty in both the map and the robot’s
pose. Lower entropy values correspond to higher certainty, whereas higher entropy values
indicate greater uncertainty. For our approach, we want the robot to automatically decide
where to go next, improving its localization, and moving to the goal. As an estimation
to decide whether it is necessary to improve the pose certainty, we use the concept of
entropy. This section provides an overview of how the entropy can be calculated in
SLAM.

Calculation
Given that in a RBPF the posterior distribution is represented by a set of weighted
particles, the integral calculation of the entropy can be transformed into a summation.
The entropy H(p(m,x1:t | dt)) over the map m and the robot’s trajectory x1:t given the
odometry and laser-measurements dt can be approximated by [Stachniss et al., 2005]:

H (p(m,x1:t | dt)) ≈ H (p(x1:t | dt)) +
#particles∑

i

ω
[i]
t H

(
p(m[i] | x[i]

1:t, dt)
)

(6)

20



Here, ω[i]
t represents the weight of the i -th particle at time step t.

According to the principle of Rao-Blackwellization, the overall entropy of the system can
be divided into two components, which will be discussed in the following two sections:

1. The map entropy associated with each particle’s map, weighted by the likelihood
of the corresponding trajectory.

2. The entropy of the posterior distribution over the robot’s trajectory, H(p(x1 : t |
dt)).

Map Entropy Calculation

When using the traditional Occupancy Grid Maps the calculation of the map entropy is
straightforward. The entropy H(ci) of a single cell ci is calculated by:

H(ci) = −p(ci) · log (p(ci)) · (−(1 − p(ci))log(1 − p(ci)) (7)

where p(ci) is the probability that the cell i is occupied [Stachniss et al., 2005]. The
formula is derived from Shannon’s entropy, which quantifies the expected amount of
information (or uncertainty) in the probability distribution.

Usually, each cell is treated as an independent binary random variable. The entire map
entropy H(m) can then be obtained by simply summing up the entropy values of all the
cells:

H(m) =
∑

i

(H(ci)) (8)

A high map entropy indicates that many cells in the grid have probabilities near 0.5,
meaning there is significant uncertainty about whether these cells are occupied or free.
Conversely, low map entropy suggests that most cells are either clearly occupied or clearly
free, reflecting a high degree of certainty in the map.

FMP Map Entropy

For the reflection model, the posterior distribution of bel(µi) is represented by a Beta
distribution (see Equation 5). The entropy H(µi), which quantifies the uncertainty in

21



the reflection probability, is calculated as [Luft et al., 2018]:

H[Beta(α, β)] = ln [B(α, β)] + (α+ β − 2)ψ(α+ β) − (α− 1)ψ(α) − (β − 1)ψ(β) (9)

Here, B(·, ·) refers to the Beta Function, and ψ(·) denotes the digamma function, the
derivative of the natural logarithm of the gamma function.

The total map entropy H(m) for the entire grid map is then obtained again by summing
the entropy values of all cells.

2.5 Pose Entropy

Pose entropy is a critical metric for understanding the robot’s localization performance.
However, computing the uncertainty H(p(x1:t | dt)) for the robot’s trajectory x1:t, given
odometry and laser measurements dt, is more complex, as each pose xt depends on the
previous locations of the trajectory x1:t−1.
A common approach is the approximation of the entropy considering only the last pose of
the robot [Stachniss et al., 2005], thus approximating H(p(x1:t | dt)) by H(p(xt | dt)).

Approaches for Particle Filters

• Number of Effective Particles:
The number of effective particles (Neff) is a simple yet effective method to approxi-
mate how well the particles represents the posterior [Grisetti et al., 2005].

Neff(t) = 1∑N
i=1(ω[i]

t )2
(10)

where ω[i]
t represents the weight of the i-th particle at time step t. This approach

is computationally efficient and provides a quick estimate of the uncertainty in
the particle distribution. However, this method only takes into consideration the
weight of the single particles, ignoring the spatial difference in their positions.

• Weighted Average of Pose Entropies:
Roy et al. [1999] proposes another way of estimating the pose certainty by averaging
over the uncertainties of the different poses (of different timesteps t) of the path:

22



H(p(x1:t | dt)) ≈ 1
t

t∑
t′=1

H(p(xt′ | dt)) (11)

where dt are the odometry and laser measurements at timestep t. And in a second
step taking a weighted average over all the particles (i):

Havg =
N∑

i=1
ω

[i]
t H

(
p(x[i]

t | dt)
)

(12)

where ω[i]
t is the weight of particle i.

• Covariance Matrix-Based Entropy:
For Gaussian approximations of the particle distribution, the entropy can be
calculated using the covariance matrix Σ. This method is straightforward and
effective when the particle distribution is approximately Gaussian [Stachniss et al.,
2005]. The entropy H for a n-dimensional Gaussian distribution G(µ,Σ) is given
by:

H(G(µ,Σ)) = log
(
(2πe)

n
2 |Σ|

)
(13)

Here, Σ represents the covariance matrix, while n denotes the dimensionality of
the pose space, and |Σ| refers to the determinant of Σ.

Expected Map Mean Information

Expected Map Mean Information (EMMI) is a metric introduced by Blanco et al. [2008]
to address challenges associated with traditional entropy calculations in the context of
RBPFs.

Calculation

EMMI is derived from the concept of Expected Map (Average Map) (EM) which is a
weighted average of all map hypotheses generated by particles in an RBPF. The key
idea is that by averaging the maps, we capture inconsistencies between different map
hypotheses as blurred areas, which represent uncertainty.

23



The averaged map (m̄) is calculated taking the weighted average of the occupancy
probabilities across all particles [Blanco et al., 2008]. For each cell c in the map, the
average occupancy probability is calculated as follows:

m̄(c) =
∑N

i=1 ωi ·mi(c)∑N
i=1 ωi

(14)

where:

• N is the number of particles
• ωi refers to the weight of the i-th particle (the likelihood of the pose of that particle

and the map hypothesis)
• mi(c) is the occupancy probability of cell c in the map of the i-th particle.

In a second step its entropy is calculated:

Mean Entropy(m̄) = 1
Nobs

∑
c ∈ obs

(1 −H(m̄(c))) (15)

where:

• H(m̄(c)) is the entropy of every cell of the EM which was at least observed from
one particle

• Nobs the number of observed cells.

The entropy H(m̄(c)) of a cell is computed using the standard Shannon entropy formula:

H(m̄(c)) = −p(m̄(c)) log p(m̄(c)) − (1 − p(m̄(c))) log (1 − p(m̄(c))) (16)

To calculate the information I, which represents certainty, the entropy is simply in-
verted.

EMMI = 1 − Mean Entropy(m̄) (17)

Eligibility Although EMMI does not consider the pose of the particles directly, it is well
suited to determine the need to improve the pose (see Figure 5):
By averaging map hypotheses, EMMI inherently penalizes particles that produce dissim-
ilar maps, often indicative of huge spatial differences of pose estimates. Additionally,
unexplored cells do not contribute to the calculation, ensuring that exploration of an
unknown area does not affect the calculation.

24



Advantages

EMMI offers several advantages that enhance their suitability to estimate the need for
pose improvement.

• Efficiency: Its calculation is computationally less intensive compared to the explicit
calculation of the pose entropy for each particle over the entire trajectory. This
efficiency makes EMMI feasible for real-time applications.

• Stability: Unlike traditional pose entropy, which can fluctuate significantly due
to the resampling effects of particle filters, EMMI provides a more stable measure
of uncertainty. This stability is achieved by incorporating map similarity across
particles, ensuring that closely clustered particles do not reduce the certainty.

• Exploration and Resolution Independence: The calculation of EMMI is
independent of the resolution of the map and the extent of the mapped area, as it
is normalized by the total number of observed cells. This normalization ensures
consistent and reliable uncertainty measurement, even in large or sparsely explored
environments.

• Robustness in Unmapped and Open Areas: EMMI handles unmapped and
open areas more robustly than traditional pose entropy. In such areas, where
environmental features are sparse, particle drift does not immediately decrease
EMMI. This prevents premature revisiting actions, allowing the robot to focus
on exploration until new features are detected. When the robot encounters new
features, EMMI effectively incorporates these into the calculation, allowing better
navigation decisions and ensuring that pose improvement actions are only triggered
when truly beneficial.

2.6 ROS Navigation Stack

The ROS Navigation Stack is a widely used framework that enables autonomous nav-
igation for robots [ROS Wiki, 2020]. It provides multiple modules for path planning,
obstacle avoidance, and motion control, ensuring safe, goal-directed navigation. As
shown in Figure 1, the navigation stack comprises the global_planner, local_planner,
costmaps, recovery_behaviors, and other supporting components. Conceptually, it
operates in a continuous loop rather than as a strictly linear workflow. The high-level

25



global_costmapglobal_planner

local_planner
DWA / BaseLocalPlanner local_costmap

recovery_behaviors

nav_goal

cmd_vel

global path

move_base

Figure 1: ROS navigation stack - Overview

process, outlined in Algorithm 2, starts when the robot is given a navigation goal
(nav_goal). The global_planner computes an initial path using the static information
in the global_costmap, while the local_planner iteratively refines the plan and gen-
erates velocity commands (cmd_vel) for the robot to follow. Should the path become
blocked or no valid trajectory is found, several recovery_behaviors are triggered to
unblock or reset the navigation process.

By repeating the local planning and recovery steps, the robot adjusts its trajectory
until it successfully reaches the navigation goal. Such iterative loops are fundamental
to reactive navigation frameworks like the ROS Navigation Stack, ensuring continuous
adaptation to changing conditions in real-world scenarios.

2.6.1 Local Planners

Local planners are responsible for short-term navigation, considering the robot’s motions
constraints and immediate surroundings, ensuring fast reactions to unforeseen obstacles
or changes in the environment. They are responsible for generating feasible and safe
paths that guide the robot towards its goal while avoiding obstacles. A local planner
operates in real-time and is beside the global map also using sensor data to dynamically
adjust the robot’s trajectory.

26



Algorithm 2 Simplified ROS Navigation Stack Loop
1: Input: Navigation goal (nav_goal), robot’s current position
2: Step 1: global_planner receives nav_goal
3: global_planner generates a high-level path from current position to goal using the

global_costmap
4: while goal not reached do
5: Step 2: local_planner updates detailed movement commands
6: local_planner uses local_costmap to avoid dynamic obstacles
7: if path is blocked or no valid trajectory found then
8: Step 3: Invoke recovery_behaviors

(e.g., rotate in place, clear cost-maps, etc.)
9: Retry or replan the path after recovery

10: end if
11: Step 4: local_planner sends new cmd_vel to robot’s actuators
12: Robot moves according to cmd_vel
13: end while
14: Output: Robot arrives safely at nav_goal

In this loop:
• global_planner: Calculates an initial path from the robot’s current location to

the goal based on static environmental data (e.g., walls, furniture).
• local_planner: Continuously refines the path, creating real-time velocity com-

mands and adjusting for new obstacles or changes in the environment.
• recovery_behaviors: Called if the robot becomes stuck or the local planner

cannot find a valid path, attempting to recover by resetting cost-maps or rotating
in place.

• cmd_vel: The velocity command messages controlling the robot’s linear and
angular velocities.

27



1. Dynamic Window Approach Planner
The Dynamic Window Approach Planner (DWA) is a widely utilized local planner in
mobile robotics, valued for its ability to avoid collisions efficiently while maintaining
real-time performance. Originally introduced by Fox et al. [1997], it has become a
foundational approach for local navigation in robotic systems.

The core principle of DWA lies in evaluating the robot’s feasible velocities, both trans-
lational and rotational, within a constrained time frame. A significant advantage of
this method is its consideration of the robot’s dynamic properties, such as velocity and
acceleration limits, during trajectory planning. By restricting the search space to a
"dynamic window" of feasible velocities, the planner ensures real-time selection of safe
trajectories tailored to the robot’s current state and capabilities.

A key feature of the DWA is that the trajectories evaluated during planning are arcs of
circles, determined by the relationship [Fox et al., 1997]:

r = v

ω
,

where r is the radius of the trajectory, v is the linear (tangential) velocity, and ω is the
angular velocity. This representation aligns with the robot’s motion constraints, making
it particularly effective for generating smooth and natural trajectories in real-world
environments.

As illustrated in Algorithm 3, the DWA planner evaluates short-term trajectories, enabling
smooth and reliable navigation even in cluttered or dynamic environments. By considering
the robot’s motion constraints and representing trajectories as arcs of circles, the planner
generates feasible paths that adhere to the robot’s physical limitations. Extensive
experiments conducted in various scenarios have consistently demonstrated the DWA
planner’s robustness and reliability, particularly for high-speed, short-range navigation
tasks.

2. Elastic Band (E-Band) Planner
The Elastic Band Planner as proposed by Quinlan and Khatib [1993] optimizes a robot’s
path by representing it as a series of interconnected elastic bands that adjust dynamically
based on environmental constraints. As the robot progresses, these bands "shorten" by
pulling the path towards the goal while simultaneously expanding to avoid obstacles.
The E-Band planner is simple and able to generate smooth and adaptable paths.

28



Algorithm 3 DWA Planner with Cost Functions
1: Input: Robot’s current state (position, velocity), navigation goal, local_costmap
2: Step 1: Search Space Restriction

Limit velocities to the dynamic window, including only velocities achievable within
a short interval based on the robot’s current state and acceleration limits.

3: Step 2: Admissible Velocities
Filter velocities to include only those that allow the robot to stop safely before

encountering obstacles, ensuring collision-free navigation.
4: Step 3: Cost Function Evaluation
5: for each admissible trajectory tri in the dynamic window do
6: Compute cost ctot(tr) as the weighted sum of individual cost functions:

ctot(tri) = ω1 · cf1(tri) + ω2 · cf2(tri) + ... (18)

7: end for
8: Step 4: Optimization
9: Select the velocity command pair (v⋆, w⋆) that minimizes the total cost:

(v⋆, w⋆) = arg min
(v,w)∈Vfeasible

ctot(tr(v, w)) (19)

Here, Vfeasible represents the set of velocity commands permissible under the robot’s
kinematic and dynamic constraints.

10: Step 5: Output: Execute the selected trajectory tr(v⋆, w⋆) by generating cmd_vel
commands to move the robot.

All cost functions used for the evaluation of a trajectory are (see source code):
• cosc(tri): Penalizes oscillatory motions (assigns cost -1 for oscillations).
• cobs(tri): Discards trajectories that move into obstacles or get too close to them.
• cgf(tri): Prefers trajectories that align the robot’s front (nose) toward the local

goal.
• cal(tri): Prefers trajectories that keep the robot aligned along the local path

(nose on path).
• cpath(tri): Encourages trajectories that follow the global path.
• cg(tri): Rewards trajectories that progress toward the local goal, based on wave

propagation.
• ctw(tri): Optionally discourages spinning motions in trajectories.

29

https://github.com/ros-planning/navigation/blob/9ad644198e132d0e950579a3bc72c29da46e60b0/dwa_local_planner/src/dwa_planner.cpp#L170


3. Timed Elastic Band (TEB) Planner
Rösmann et al. [2015] introduced a modified version of the classic Elastic Band planner
by incorporating time as an additional dimension in the path optimization process. This
capability allows the TEB planner to optimize not only the geometric shape of the path
but also the timing of the robot’s movements. Consequently, the planner facilitates
more efficient navigation, especially in dynamic environments where precise timing plays
a critical role. To accomplish this, the TEB planner minimizes a cost function that
integrates various objectives, such as obstacle avoidance, trajectory smoothness, and
additional relevant criteria. By balancing these factors, the planner produces trajectories
that prioritize both safety and efficiency.

4. Model Predictive Control (MPC)
MPC or Receding Horizon Control as proposed by Mayne et al. [2000] optimizes the
robot’s trajectory over a finite time horizon, solving a control problem at each time step.
It considers the robot’s dynamics, constraints, and predicted future states, generating
smooth, feasible trajectories. It uses a cost function that balances goal progress, control
effort, etc.

30



3 State-of-the-Art
This chapter reviews current research and methodologies related to Active SLAM (see
section 2.1), particularly in the context of integrating navigation with real-world tasks,
such as those presented in the RoboCup@Home competition (see section 1.1).

3.1 Active SLAM

In recent years, Active SLAM (ASLAM) has received significant attention; a comprehen-
sive review of recent and notable studies can be found in Active SLAM: A Review on
Last Decade [Ahmed et al., 2023].
One of the pioneering contributions in this field was made by Stachniss et al. [2005], who
developed a decision-theoretic framework that allows robots to evaluate potential actions
by balancing the costs of execution against the expected information gain. This approach
facilitates actions that enhance the quality of the map while reducing pose uncertainty,
exemplifying the integration of exploration, mapping, and localization strategies.
Although numerous studies have explored various aspects of ASLAM in recent years, few
have directly addressed the specific problem of integrating goal-directed navigation with
ASLAM. A notable contribution in this domain is presented by Chaplot et al. [2020],
who introduced a neural framework that combines learned modules with classical path
planning. Their focus on maximizing exploration efficiency is commendable; however, it
primarily emphasizes exploration over navigation towards specific goals.
In the context of improving exploration strategies, the work by Zhelo et al. [2018] offers
valuable insights. This paper investigates curiosity-driven exploration for map-less nav-
igation using Deep Reinforcement Learning (DRL). The authors propose augmenting
traditional extrinsic rewards with intrinsic rewards derived from the agent’s curiosity, en-
abling it to explore more effectively in environments without predefined maps. Although
the focus is on navigation without a map, the principles of intrinsic motivation to en-
courage exploration can inform strategies in SLAM, particularly in balancing exploration
and goal-oriented navigation.

31



3.2 Approaches in RoboCup@Home

In this context it is important to examine approaches that have been specifically designed
to address the challenges of navigation in unknown environments. The RoboCup@Home
competition provides a unique benchmark for evaluating these approaches, particularly
with the restaurant scenario (see section 1.1), which involves tasks requiring robust
navigation and high localization accuracy. Therefore, comparing the navigation and local-
ization approaches used by RoboCup teams offers valuable insight into the effectiveness
and real-world applicability of traditional navigation strategies and their limitations.
A common approach among competing teams in the restaurant scenario is to rely heavily
on odometry for navigation. Although this method simplifies initial movement and
positioning, it can accumulate errors over time, especially in environments with obstacles
or uneven terrain. These errors lead to disorientation, undermining the robot’s ability to
return to its starting position, which is a common failure in this task.
On the other hand, teams employing SLAM algorithms face distinct challenges that
need to be addressed to improve reliability. For instance, RBPF, commonly used in
SLAM-based systems, can experience instability during the resampling phase. This
process, though essential for computational efficiency, may cause sudden shifts in the
robot’s estimated pose. These instabilities can be particularly problematic in high-stakes
tasks, such as those in the restaurant scenario, where they could possibly lead to a
navigation failure.
Thus, examining both odometry-based and SLAM-based approaches in the RoboCup-
@Home context highlights the critical need for solutions that can seamlessly integrate
navigation with pose improvement.

3.3 Towards a Combined Approach

The challenges faced by both odometry-based and SLAM-based approaches underscore
the necessity for a more integrated strategy.

Although significant progress has been made in the field of ASLAM, it is usually considered
as an isolated problem from navigation. This gap presents a significant opportunity for
further investigation in the simultaneous need for effective and reliable navigation in
unexplored areas (see section 1.1).

32



4 Adaptive Local Planning for Improved
Pose Certainty in Active SLAM

In the following sections, we detail the methodology and approach used to address
our main goal of dynamically balancing our two objectives of an effective goal-directed
navigation while maintaining a good pose estimate.

To accomplish this, we need to solve three challenges:

1. The improvement of pose estimation (section 4.1)

2. An accurate pose certainty estimation (section 4.2)

3. Balancing Goal-Directed Navigation and Pose Improvement (section 4.3)

The following graphic provides a broad overview on how the different components work
together in order to achieve the overall goal.

GMapping
with Advanced FMP

Pose Entropy
with EMMI

Particles
& Maps

Balancing
Mechanism

DWA
with Pose-Improve

Cost Function

Impact of
Cost Function

Figure 2: Adaptive Local Planning for Improved Pose Certainty in ASLAM - Overview

33



4.1 Pose Improvement

The first challenge is to enhance the robot’s pose estimation accuracy. Within the SLAM
framework, several strategies are identified to achieve this, such as:

• Revisiting previously mapped areas,
• Implementing loop closure techniques,
• Minimizing movement through unknown or unexplored spaces.

Controlling the robot’s movement through modifications to the navigation system allows
these strategies to be effectively implemented.

4.1.1 Strategies for Pose Improvement

The ROS Navigation Stack provides two approaches for altering the robot’s movement:
by adjusting either the local or the global trajectory. In the following, we will explore
the advantages of each approach in detail:

Global Approach A global approach to pose improvement involves altering the overall
trajectory to achieve higher-level navigation goals, either by modifying the global planner
or by setting intermediate goals that guide the robot along a more desirable path.

The advantages of this method include planning with foresight, which optimizes the entire
trajectory and reduces the risk of the robot getting trapped in local minima. However,
the global approach has drawbacks. Since the SLAM algorithm continuously updates
the map, assessments of whether a movement revisits known areas or explores unknown
space can change frequently. Furthermore, the pose entropy, representing the uncertainty
in the robot pose, evolves as the map updates. Consequently, the need for revisiting
actions varies dynamically, but global plans typically do not update frequently enough to
capture these changes, leading to potentially suboptimal decisions.

Local Approach Given the limitations of the global approach, this work adopts a more
adaptable local strategy. The main advantage of this approach is its responsiveness to
rapid environmental changes and variations in pose uncertainty, allowing the robot to
adapt its path based on the most recent map updates.

34



Implementing this local strategy requires modifications to the local planner responsible
for generating real-time trajectories. In the ROS framework adopted for this project,
several local planners are available (see subsection 2.6.1), including:

• TEB (Timed Elastic Band),
• EBand (Elastic Band),
• MPC (Model Predictive Control), and
• and Dynamic Window Approach (DWA) planner.

Comparison of Local Planners

• TEB and Elastic Band models represent the robot’s trajectory as an elastic band,
which dynamically extends to avoid obstacles, maintaining a smooth navigation.
These planners heavily rely on the global plan, meaning that revisiting actions
conflicts with their core design principles. Implementing an uncertainty-based
decision-making approach in this planner would require substantial modifications
to the algorithms, which may compromise their effectiveness.

• Model Predictive Control (MPC) computes optimized trajectories by address-
ing control problems at every time step, considering the dynamic model’s constraints.
Despite its effectiveness, MPC usually demands significant computational resources
and is difficult to adapt. Evaluating trajectories in real time for pose improvement
is impractical with MPC due to high complexity and computational demands,
making it less suitable for scenarios that need real-time adaptability.

• DWA evaluates potential trajectories within the robot’s velocity space and inte-
grates various cost functions. This modularity makes it well suited to include new
metrics for assessing pose improvement potential. The DWA planner’s ability to
dynamically adjust cost function weights allows it to respond to changing pose
improvement needs based on real-time entropy estimates.

Due to the advantages of the DWA planner, this work focuses on its modification by
introducing a new cost function.

35



4.1.2 The new PoseBoost cost function

To incorporate pose improvement actions in the DWA planner, this work introduces a
new cost function, the PoseBoost cost function (PBF). This function contributes to the
overall cost ctot by evaluating the potential of a local trajectory to improve the robot’s
pose estimate.

The updated calculation of the total cost ctot for a local trajectory tri can be expressed
as:

ctot(tri) = ωpbf · cpbf(tri) + ω1 · cf1(tri) + ω2 · cf2(tri) + ... (20)

Here, ωx represents the weighting factors for individual cost functions.

While cpbf(tri) is the newly introduced term specifically designed to enhance pose im-
provement actions, the other terms (cf1, cf2, . . .) correspond to the original cost functions
(see Equation 18) of the DWA planner. These include objectives such as moving toward
the goal, obstacle avoidance, and following the global plan, ensuring that the planner
retains its foundational functionality. The dynamic calculation of ωpbf, which balances
pose improvement actions with the existing cost functions, is detailed in section 4.3.

Methodology The primary objective of the PBF is to evaluate how much a local
trajectory contributes to an improvement of the current pose estimate of the robot.

Generally, revisiting actions of mapped areas removes uncertain pose hypotheses and
corrects accumulated drift, which enhances the accuracy of the pose estimate (see
section 4.1). To quantify whether a trajectory explores or revisits, a ray-casting operation
is performed at its endpoint, counting the number of known occupied cells in the OGM.
Each ray is traced until it either intersects with an occupied cell or reaches the maximum
range of the laser. Regions with a high number of occupied cells provide stable features,
which are essential for accurate scan matching. When revisited, these features enable
the SLAM algorithm (e.g. GM) to better align the current sensor data with the map,
thus improving pose certainty. Trajectories leading to such areas with a high number of
occupied cells are therefore assigned a lower cost, as they support localization accuracy
and reliable navigation.

36



Ray-casting

For the ray-casting operations we would need to efficiently iterate over all the cells
intersected by the laser rays. To do so, we decided to employ an adapted version of the
line drawing algorithm originally proposed by Bresenham [1965].

While the traditional Bresenham algorithm typically identifies a single point per axis
along the line, our modified version returns all the grid cells intersected by the ideal
line throughout its path, ensuring a more accurate representation of the laser beams’
interaction with the grid cells [Dedu, 2001].

Cost Calculation

The PBF is seamlessly integrated into the base local planner by implementing the
necessary cost function interface. To produce a meaningful cost value, we first compute
the percentage of potentially occupied cells identified during the ray-casting operation.
This percentage is defined as the ratio between the number of observed occupied cells
Nocc and the estimated maximum number of cells that could be encountered, denoted as
Maxocc:

Nocc

Maxocc
(21)

In this context, a higher Nocc implies a greater proportion of occupied cells, which would
normally lead to a higher cost value. However, since higher cost values negatively impact
trajectory selection, we invert the output:

cpbf(tri) = 1 − Nocc

Maxocc
(22)

This inversion ensures that when more occupied cells are detected during ray-casting,
the resulting PoseBoost cost cpbf(tri) is lower, thereby promoting trajectories that are
more likely to improve pose certainty.

Estimation of Maxocc Since the exact calculation of Maxocc is complex and unnecessary
for our purposes, we opted for a rough estimation.
To estimate the maximum number of grid cells intersected by a circle of radius r in
an OGM with a resolution of res, we developed a perimeter-based heuristic formula.
The perimeter of the circle, 2πr, divided by the resolution of the grid cells, provides an
approximate count of the cells along the edge of the circle:

37



Estimated cells ≈ 2π · r

res (23)

For our application, this formula was adapted to account for the laser’s angular range
α. The angular range α represents the portion of the circle’s perimeter covered by the
laser scan. In the limit case, when the laser covers the full 360 degrees, α = 2π, and the
estimation reverts to the original formula:

Estimated cells ≈ 2π · α2π · r

res = α · r

res (24)

To ensure that the estimate Maxocc aligns with the actual number of ray-casted cells,
Nocc, the safety factor sf was introduced.

Maxocc ≲ sf · α · r

res (25)

Challenges in Safety and Trajectory Selection

Although the primary objective of PBF is to encourage revisiting actions, testing revealed
a potential issue in partially mapped areas. When the robot faces a mapped obstacle,
trajectories directing the robot away from these obstacles often lead toward sparsely
mapped or unmapped regions. In such cases, the ray-casting operation returns a low
count of Nobs due to the lack of mapped features in these areas.
This scoring bias causes the PBF to inadvertently favor trajectories that keep the
robot facing already mapped obstacles, preventing it from exploring unmapped regions.
Consequently, the robot may stick to paths near obstacles, or even move closer to them,
in an effort to maximize the count of observed cells Nobs.
This behavior poses a risk of unsafe maneuvers, as the robot may navigate dangerously
close to obstacles. To mitigate this issue, we introduced the pose_boost_min_distance
parameter in the DWA configuration. This safety parameter defines a critical boundary
around the robot, ensuring that the proximity of obstacles is explicitly considered during
trajectory evaluation. If PBF detects that a proposed trajectory violating this minimum
distance, it assigns the highest possible cost to that trajectory, effectively preventing its
selection.
Besides enhancing safety of the navigation process, it also ensures that pose improvement
efforts do not compromise the primary goal of maintaining a safe operational boundary
for the robot. Further details of the mechanism are discussed in section 4.3.

38



4.2 Pose Entropy

An accurate and stable estimation of the pose entropy is essential to assess the reliability
of the robot pose estimate, which allows dynamic balance between the goal-directed
navigation and pose improvement actions.

4.2.1 Current Approach in GMapping

GMapping Overview

GM, a widely used ROS implementation of Fast SLAM 2.0, allows a robot to build a 2D
map while estimating its pose (see section 2.2). Multiple particles represent potential
trajectories, each with an individual map estimate that is continuously updated through
sensor inputs and odometry.

Baseline Pose Entropy Calculation

The standard method for calculating pose entropy in GM can be found in the source
code (access here) and is expressed as:

H(p(x1:t|dt)) ≈ −1
N

N∑
i=1

ωi log(ωi) (26)

where H(p(x1:t|dt)) represents the pose entropy, ωi is the normalized weight of the i-th
particle, and N is the number of particles.

4.2.2 Limitations and Rationale for Improvement

The standard pose entropy calculation in GM is often performed where particle weights
may not be properly updated, especially post-resampling. This can lead to inaccurately
constant entropy values that do not reflect the true uncertainty in the pose estimate.
Furthermore, relying solely on particle weights for entropy calculations overlooks the
spatial distribution of the estimated poses. Particles with identical weight distributions
but significantly different spatial distributions should not result in the same entropy
value. Specifically, particles that are far apart should produce a higher entropy, reflecting

39

https://github.com/ros-perception/slam_gmapping/blob/melodic-devel/gmapping/src/slam_gmapping.cpp#L654


greater uncertainty, compared to tightly clustered particles. Addressing these limitations
is crucial to improving the reliability and accuracy of pose entropy calculations.

4.2.3 Review of Alternative Approaches

To address these limitations, several new methods were evaluated to improve pose entropy
accuracy and stability without significantly increasing computational complexity (see
section 2.5).

Identified Challenges
Some specific challenges addressed in the new approach include:

• Temporal Fluctuations: Resampling in RBPF, while crucial to maintaining
computational efficiency, introduces significant temporal fluctuations in pose entropy
calculations, causing inconsistencies that do not always represent reality.

• Representation of Hypothesis Diversity: Calculations based only on particle
weights may overlook the spatial distribution of particles, potentially misrepresenting
the diversity of hypotheses.

• Computational Complexity: More accurate entropy calculations involving full
trajectory comparisons would increase computational demands, posing challenges
for real-time applications.

Testing and Selection of EMMI
All the approaches mentioned in section 2.5 were implemented within the GM frame-
work and tested in various scenarios to assess their performance in terms of precision,
computational efficiency, and stability to represent the uncertainty of the pose.

The Expected Map Mean Information (see section 2.5) emerged as the most effective
approach, offering a balanced method with better accuracy in representing pose certainty
and manageable computational requirements, suitable for real-time SLAM applications.

40



4.2.4 Expected Map Mean Information

The baseline approach to calculate EMMI value involves a sequence of steps, as shown in
Figure 3, and begins with the use of a standard OGM. For a detailed introduction of
EMMI please refer to section 2.5.

1. Expected Map
weighted averaged

map of all particles

2. Map Entropy
calculate Shannon

Entropy of observed cells

3. Map Information
I(m) =

∑
∀x,y I(mx,y)

I(mx,y) = 1 −H(mx,y)

4. Mean Information
Ī(m) = I(m)/Nobs

Ī(m) = 0; if (Nobs == 0)

Figure 3: EMMI entropy calculation process - Flowchart

The process includes:

1. Calculation of the Expected Map (EM), which is an average map based on the
current particles (see Equation 14).

2. Computation of the Shannon Map Entropy H(m) of observed cells in the EM.

3. Conversion of entropy to map information I(m), reflecting certainty rather than
uncertainty.

4. Normalization of map information I(m) by the number of observed cells Nobs to
ensure independence from map resolution and extent of exploration.

41



Integration of Full Map Posterior

To adapt the EMMI calculation suiting FMP requirements, following modifications were
implemented:

1. Rather than directly summing the weighted probabilities, we aggregate α and β

values weighted by the confidence of each particle observing the cell. This ensures
that each cell’s contribution is proportionate to the particle’s confidence in its
observations.

ᾱx,y =
∑

i

ωi · αi
x,y (27)

β̄x,y =
∑

i

ωi · βi
x,y (28)

where ᾱx,y and β̄x,y represent the expected α and β values of one cell, respectively.
Each αi

x,y and βi
x,y are contributions of the particle i reflecting the hits and misses

observed by that particle at the cell coordinates x, y.

2. After aggregation, normalize the values of α and β by the sum of weights that
contribute to each cell, followed by the calculation of entropy using the FMP model
(see section 2.4):

H(cx,y) = H

[
Beta

(
ᾱx,y

ω̄
+ 1, β̄x,y

ω̄
+ 1

)]
(29)

where ω̄ is the sum of weights of particles that have observed the current cell cx,y.

3. The Shannon entropy remains zero once a cell is either fully hit or fully missed, as
no further uncertainty exists. However, this model does not account for partially
observed cells, where uncertainty persists. In contrast, the FMP entropy captures
the uncertainty associated with partially observed cells. Figure 4 illustrates how
FMP entropy decreases continuously as a cell accumulates consistent observations
(e.g., repeated hits). This divergence highlights the need for normalization to ensure
that the entropy remains bounded and interpretable during runtime.

An intuitive approach to normalization would involve using a gradient threshold.
However, this method requires access to the previous entropy values of all cells,
making it computationally impractical. As an alternative, we define a fixed threshold

42



parameter, entropy_threshold, within GM, serving as a reference for absolute
certainty. The normalized entropy is then computed as:

H̄[Beta] = max(H[Beta],−entropy_threshold) (30)

4. The worst entropy value for unobserved cells remains at 0. For observed cells:

Ĥ(cx,y) = H̄(cx,y) · ω̄ + 0 · (1 − ω̄) (31)

5. Transform expected Entropy Ĥ into information I, representing certainty as a
probability.

Hence we normalized the minimum entropy (see Equation 30) we can deduct the
information in the following way:

I(cx,y) = − Ĥ(cx,y)
entropy_threshold

(32)

Figure 4: Comparison of FMP and Shannon entropy over consistent measurements.
This graph compares the entropy development of the FMP model (blue curve)
and the standard Shannon entropy (red curve). The x-axis represents the
number of consistent measurements (e.g., repeated hits in a cell), and the
y-axis shows the corresponding entropy values. While the Shannon entropy,
appearing as an almost flat line, remains at zero once a cell is fully observed,
FMP entropy decreases continuously, capturing the remaining uncertainty
for partially observed cells.

43



Accurate Local Representation

In many real-world scenarios, a robot’s localization can degrade over time, especially as
it traverses areas with fewer features or more dynamic obstacles. If the pose entropy is
calculated over the entire map, previously well-localized areas may still contribute to a
favorable entropy value, despite the uncertainty on the robot’s current position increase
due to the lack of local features. To prevent such misleading results and ensure a more
accurate entropy estimation, the EMMI calculations were restricted to a local radius r
around the robot.

Limiting EMMI calculation to a smaller region around the robot is crucial for maintaining
the accuracy of pose uncertainty. However, it is important to ensure that the radius is not
too restrictive, as this could exclude important map areas, especially when the robot’s
particles are spatially distributed across a large area. A non-representative subset of the
map could lead to skewed values, which would undermine the accuracy of the system.

To strike a balance between limiting the calculation area and ensuring that the entropy
estimation reflects the robot’s actual pose uncertainty, we define the radius r based on
two key parameters:

• the laser range lr (the maximum distance at which the robot’s sensors can measure
the environment) and

• the update distance du (the distance the robot travels before a map update is
triggered).

This radius is defined by the following formula:

r = er · du + lr (33)

Incorporating both the laser range lr and the update distance du in this way ensures
that the EMMI calculation remains relevant to the robot’s immediate surroundings. To
ensure that its calculation includes enough of the surrounding environment to account for
relevant changes in the robot’s trajectory and pose without being influenced by distant
map areas that no longer reflect the robot’s current state, the parameter emmi_radius
(er) was introduced. It ensures that the calculation of EMMI includes enough of the
surrounding environment to account for relevant changes in the robot’s trajectory and
pose, without being influenced by distant map areas that no longer reflect the robot’s
current state. An added benefit of limiting the local radius is the computational benefit,
as fewer areas need to be processed.

44



Stability with Increased Measurements

In scenarios where a map region has been extensively surveyed with consistent measure-
ments, the Full Map Posterior approach tends to maintain a high Information (I) value,
even if local pose estimates temporarily diverge. This stability is beneficial due to several
reasons:

• Stability in Decision-Making: High stability in Information (I) means that the
system is less likely to react abruptly to short-term deviations in pose estimates. This
is crucial in maintaining a consistent strategy for navigation and map exploration,
Stability of the Information values prevents abrupt responses to short-term pose
deviations supporting consistent navigation strategies.

• Avoidance of Data Confusion: Avoiding redundant revisits based on minor errors
prevents deterioration of pose and map estimates by introducing noise or conflicting
data, maintaining map clarity.

• Resource Efficiency: By curbing redundant revisits, the system conserves com-
putational resources prioritizing pose improvement actions in less certain areas,
enhancing overall navigation effectiveness.

Using EMMI with FMPs improves the balance between goal-directed navigation and
pose accuracy.

45



(a) Low EMMI Value (0.040922): 14 unique particles.

(b) High EMMI Value (0.532546): 30 unique particles.

Figure 5: Comparison of particle distributions in RViz (see subsubsection 5.3.2).
Each red arrow represents a particle, with size proportional to its weight, and
the white circle denotes the robot’s position.
(a) Low EMMI (0.040922): Fourteen dispersed particles indicate high
spatial divergence and poor pose estimation.
(b) High EMMI (0.532546): Thirty tightly clustered particles with similar
weights reflect consistent mapping and accurate pose estimation.
Unlike traditional pose certainty measures, such as the baseline GM entropy
calculation (see subsubsection 4.2.1), EMMI effectively captures spatial con-
sistency, demonstrating its superior effectiveness in evaluating pose certainty.

46



4.3 Balancing Goal-Directed Navigation and Pose Improvement

In this section, we focus on achieving a balance between goal-directed navigation and pose
stability within the DWA framework. Building on the foundations of pose improvement
actions and pose entropy estimation, this section addresses how these elements integrate to
create a coherent navigation strategy. Additionally, we explore the challenges encountered
in aligning navigation goals with pose reliability, presenting strategies to overcome these
issues.

The diagram below provides an overview of the mechanisms controlling the PBF and its
influence on trajectory selection.

GMapping
with FMP & EMMI

ωpbf = f(I, ps)
p_boost_scale ps

DWA
ωpbf · pbfc

global_planner
dist_after_osc. do

move_base
oscillation_r. or

EMMI
Information I

Weight ω

after do

⇒ PBF on
after or

⇒ PBF off

Figure 6: Overview of the PBF balancing mechanism.
The influence of the PBF is dynamically adjusted based on the user-defined
parameter pose_boost_scale and EMMI (provided by the modified GM
package). Whenever move base observes the robot oscillating longer than
pbf_oscillation_reset seconds, the PoseBoost cost function is temporarily
deactivated. It gets reactivated once the robot has traveled a distance de-
fined by pose_boost_distance_after_oscillation. This ensures that the
mechanism adapts to the robot’s current navigation state while maintaining
operational safety and efficiency.

47



The following subsections will examine the methodology behind the dynamic balancing
between navigation and pose stability.

4.3.1 System and Variable Analysis

To appropriately calculate the weighting factor ωpbf for the PBF, we analyze the dynamics
of trajectory selection and the influence of existing cost functions. Understanding these
interactions is necessary to assess the desired impact of the new PBF component.

Information I - Dynamic Window Approach

The DWA selects trajectories by evaluating them with the help of cost functions that score
aspects such as safety, efficiency and goal alignment (see Equation 18). The trajectory
with the lowest cumulative score gets chosen.

Integrating PBF requires careful calibration to ensure it contributes to decision-making
without overshadowing essential cost functions like collision avoidance. Initial analyses
of existing cost values guided the calibration of the PBF output. Typically, a viable
trajectory tri scores in the range:

0 ≤ ctot(tri) ≲ 100 (34)

Output Range of the PBF

To determine a suitable weight for the PBF, we analyze the raw output range it produces.
For a trajectory tri, the cost is calculated as follows:

cpbf(tri) = 1 − Nocc(tri)
Maxocc

(35)

where:

• Maxocc represents the maximum number of cells that could be observed by the robot,
• Nocc(tri) counts the occupied cells that were encountered in the ray-casting operation

at the last pose of the trajectory.

48



The cpbf yields a value between 0 and 1, with lower values indicating that the trajectory
tri could significantly contribute to improving pose certainty (see subsection 4.1.2).
Consequently, PBF effectively penalizes trajectories that do little to revisit known areas,
enhancing the likelihood of improving the pose.

Desired Values of PBF

To integrate the influence of PBF effectively without overwhelming other crucial cost
factors, cpbf(tri) should not excessively exceed the accumulated cost ctot (see Equation 34)
of the other cost functions.

To ensure effective influence without overwhelming other cost factors, the target value
for cpbf(tri) is set around 35:

Targetcpbf(tri) ≈ 35 (36)

4.3.2 Adaptive Weighting Mechanism

Following the analysis of the raw PBF output and identification of a target cost value,
we now present a method for dynamically defining an appropriate weight, ωpbf, with help
of the EMMI-based information I.

PoseBoost Scale Parameter

In addition to the dynamic EMMI value, a manual control over the PBF influence is
introduced through the pose_boost_scale parameter (ps) in the DWA configuration.
This parameter modulates the effect of the PBF on trajectory costs: higher values increase
its impact, promoting trajectories that enhance pose accuracy, while lower values favor
more direct, efficient navigation. Tuning ps allows users to adapt the navigation behavior
to suit operational requirements or environmental conditions, ensuring an optimal balance
between rapid goal attainment and robust pose estimation.

49



Weight Calculation Formula

The weight ωpbf for the PBF is computed combining the user-defined pose_boost_scale
(ps) with the inverted Information I (where a higher I indicates greater pose certainty).
The formula is given by:

ωpbf = f(I, ps) = (1 − I) · ps (37)

Here:

• Information (I): 0 ≤ I ≤ 1 (see section 2.5)
• pose_boost_scale (ps): 0 ≤ ps (see subsubsection 4.3.2)

4.3.3 Managing conflicting objectives

Integrating PBF into the DWA planner, which is designed to increase revisiting actions
to improve the pose, presents several operational challenges. These challenges are
particularly prominent when balancing potentially conflicting navigation objectives.

A primary challenge is oscillation, which arises when the robot is poorly localized and
the navigation goal is in an open, yet-to-be-explored area. In such cases, the drive to
reach the goal may conflict with the need to revisit known areas, leading to counteracting
cost functions that cause the robot to oscillate.

To mitigate this, a timeout mechanism using the oscillation_timeout_pose_boost
parameter (ot) temporarily disables the PBF upon detecting oscillation, allowing the
robot to focus on reaching its goal without interference from conflicting cost functions.

The PBF is reactivated only if a new global plan is generated and the robot has moved a
minimum distance, as specified by pose_boost_min_distance. This parameter ensures
that the PBF is used strategically, prioritizing stability and preventing excessive or
premature pose improvement actions.

50



4.3.4 Final PoseBoost cost function Output

The final PBF cost value for a trajectory tri at time step t results from combining the
dynamically computed weight with the trajectory’s ability to improve pose accuracy.
Formally, it is expressed as:

PBFcost(tri) = ωpbf(t) · cpbf(tri) (38)

where:

• ωpbf(t) indicates the PBF impact at time step t (see Equation 37),

• cpbf(tri) represents the potential to improve pose certainty (see Equation 35).

By expanding these terms, we obtain the complete formula:

PBFcost(tri) = (1 − I(t)) · pb_s ·
(
1 − Nocc(tri)

Maxocc

)
, (39)

where:

• I denotes the EMMI (pose certainty estimation) at time step t,

• pb_s is the user-defined pose_boost_scale that scales the influence of the PBF,

• Maxocc represents the maximum number of cells that could be observed by the
robot,

• Nocc(tri) counts the occupied cells that were encountered in the ray-casting operation
at the last pose of the trajectory.

This formulation ensures that each trajectory’s cost is adjusted according to both the
robot’s present need for re-localization and the trajectory’s ability to contribute to that
re-localization.

51



4.3.5 Full DWA Optimization Formulation

At each control cycle, DWA generates and evaluates a set of feasible trajectories by
sampling linear and angular velocities (v, w) from the robot’s dynamic window (see
subsubsection 2.6.1). Each candidate trajectory tri is then assigned a total cost, denoted
by ctot(tri) (see Equation 18).

Additionally to the standard cost functions (see Algorithm 3) the DWA planner now also
considers the PBFcost.

ctot(tri) = oscillationcost + obstaclecost + goal_frontcost + alignmentcost+

pathcost + goalcost + twirlingcost + PBFcost (40)

The robot ultimately selects the velocity command pair (v⋆, w⋆) that minimizes the new
total cost:

(v⋆, w⋆) = arg min
(v,w)∈Vfeasible

ctot(tr(v, w)) (41)

52



5 Implementation
In this chapter, we detail the practical implementation of the concepts and strategies
discussed in the previous chapter 4.

5.1 System Configuration and Parameter Integration

The integration of the PBF enhancements required the implementation of additional
settings within the relevant ROS packages used throughout this project. The following
summary outlines the newly introduced user parameters along with their respective
functionalities.

• GMapping

Calculation of pose certainty information I (EMMI)
· entropy_threshold: Normalizing FMP Entropy (see subsubsection 4.2.4).
· emmi_radius: Factor to control the area around the position of the robot used

calculating EMMI (see Equation 33).

• DWA

Estimation of Pose Improvement Potential
· pose_boost_scale: Adjusts the overall influence of PBF on trajectory selec-

tion, allowing users to control the emphasis on pose improvement.
· pose_boost_min_distance: Specifies the minimum safe distance from ob-

stacles within which PBF penalizes local trajectories, thus maintaining safe
navigation distances.

· sf: Factor to calculate the maximum numbers of encountered cells in a ray-
casting operation (see Equation 25).

· pose_boost_laser_topic: Topic used to gather laser information used for
ray-casting process (see subsubsection 4.1.2). By default the topic used for the
construction of the local cost-map is used.

53



· pose_boost_visualize_area, pose_boost_visualize_cells: Enabling vi-
sualization functions as described in subsubsection 5.2.2.

• Move Base

Detection of oscillation
· pbf_oscillation_reset: Sets a timeout period, after which PBF is temporar-

ily disabled if oscillation is detected, ensuring stable navigation.

• Global Planner

Reactivates the PBF if deactivated
· pose_boost_distance_after_oscillation: Defines the minimum distance

the robot must travel after an oscillation event before the PBF can be reacti-
vated, preventing premature reactivation.

These parameters are designed for dynamic reconfiguration during runtime, allowing
the system to adapt to changing environmental conditions and operational demands. A
seamless communication between components is ensured by leveraging ROS messages,
ensuring flexible and responsive navigation strategies.

5.2 Pose Improvement

To incorporate a new cost function in the DWA planner a thorough understanding of its
structure within the ROS navigation stack framework (see section 2.6) is required.

5.2.1 GMapping Framework and Requirements

The DWA planner acts as a wrapper around the base local planner and is responsible for
generating accessible trajectories. The base local planner then evaluates each trajectory
tr based on different objectives represented by the cost functions (see subsubsection 2.6.1).

DWA
creating trajectories

sel. tri with lowest ctot

base_local_planner

ctot(tri) = ω1 · cf1(tri) + ...

trajectory tri

Cost ctot

Figure 7: DWA and base_local_planner interaction during trajectory selection.

54



Requirements
Successful implementation of the proposed enhancements required addressing the following
challenges:

1. Integration of the new cost function into the framework
2. Real-time access to map data
3. Efficient execution of ray-casting operation
4. Tracking of occupied cells
5. Visualization of outcomes to validate correctness and accuracy

5.2.2 Implementation of Components

The components designed to meet the specified requirements are illustrated in Figure 8.
In what follows, we will describe the purpose of each component and clarify how the
PBF functions within the DWA planner.

PoseBoost
+ actual_scale : double
+ GM_scale : double
+ scale_param : double
+ pb_min_dist : double
+ score(Trajectory) : double
+ resetScale() : void

Map Manager
+ raycast_set_: unordered
set<u_int32_t>
+ mapCallback(OGM): void
+ worldToMap(worldP, mapP)
+ getIndex(mapPoint): u_int32_t
+ getCoordinates(u_int32_t i,
mapPoint)

Visualizer

+ visualizeCells(pose)
+ display-
Grid(occ_cells, posi-
tion)

GridLineTraversal

+ gridLine(start, end,
GTLine)

Figure 8: Classes within the DWA Local Planner involved in implementing the Pose-
Boost cost function and their interactions with the existing DWA framework.

55



PoseBoost cost function

All cost functions in the DWA planner must implement the TrajectoryCostFunction
interface (see source code). During trajectory evaluation, the base_local_planner
invokes the score function to retrieve the cost values for a given trajectory.

To integrate our new PoseBoost cost function (PBF), we implemented the Trajectory-
CostFunction interface and incorporated it into the DWA planner’s trajectory evaluation
process. This addition ensures that the PBF contributes to the overall cost calculation,
allowing the planner to factor in the potential for pose improvement when selecting
optimal trajectories.

The trajectory scoring process requires efficient ray casting operations and access to the
most up-to-date map. To achieve this, we implemented the external modules:

• The Map Manager handles map updates and tracks occupied cells in real time.

• The Grid Line Traversal module efficiently performs ray casting operations to
evaluate the trajectories.

Map Manager

The Map Manager plays an important role in managing the map data and tracking
cells during ray-casting operations for each trajectory. It subscribes to the /map topic
published by the GM package, ensuring real-time access to the latest map data.

Challenges in Computational Efficiency Updating local plans at high frequencies for
each trajectory poses computational challenges. Consider our base configuration as an
example:

• Laser range r = 5m
• Laser angle α = 200◦

• Number of beams b = 605
• Map resolution res = 0.05
• Frequency f = 20Hz

56

https://github.com/ros-planning/navigation/blob/9ad644198e132d0e950579a3bc72c29da46e60b0/base_local_planner/include/base_local_planner/trajectory_cost_function.h


Required number of cells per second:

b · r

res
· f = 726 000 000 cells

second (42)

Managing such a vast number of cells per second can degrade the planner’s responsiveness,
potentially compromising its functionality.

Optimizing Data Management To address the high computational demands of the
application, various data structures were evaluated to determine the most efficient solution
for managing and accessing map indices. The following approaches were tested:

1. unordered_set<tuple<int, int»:
This data structure stores map indices as tuples in an unordered set, providing
several advantages:

• Straightforward implementation with minimal complexity.
• Ensures element uniqueness without additional checks.
• Facilitates direct retrieval of the number of cells by querying the set size.
• Efficient reset capabilities, enabling quick re-initialization between trajectory

evaluations.

However, the computational overhead associated with hashing and comparing tuples
proved to be a limitation, especially for high-frequency operations, rendering this
approach suboptimal for real-time applications.

2. int8[]:
This method represents a cropped region of the map, restricted to areas within the
laser range of the robot. Although it offers constant-time access and eliminates the
need for runtime memory allocation, the following drawbacks were identified:

• Significant time overhead due to copying the array during each iteration.
• The need to iterate through the entire array to count cells introduces ineffi-

ciencies.

These limitations reduced the practicality of this approach for the given application.

3. unordered_set<u_int32_t>:
This method amalgamates the x and y coordinates into one u_int32_t value using
either multiplication or a more rapid bit-shifting technique. This composite value is

57



subsequently stored within an unordered set. This process preserves the advantages
of a tuple-based implementation, which include simplicity and rapid access, while
significantly lowering the computational expense linked to hashing and comparing
two distinct values.

Following comprehensive analysis and performance evaluations, the unordered_set-
<u_int32_t> was selected for its superior performance as the most suitable data structure
for this application. This choice ensures scalability and responsiveness during high-
frequency operations, reflecting a careful assessment of both theoretical and practical
performance aspects.

Figure 9: ROS Visualization (RViz) Visualizer: The blue dot at the center marks
the endpoint of the local trajectory under evaluation. A ray-casting operation
is executed from this point until an occupied cell is detected or the maximum
laser range, depicted by the red circle, is reached.

Grid Line Traversal

The last integral part of the ray casting process is the efficient and precise implementation
of the Bresenham-based supercover line algorithm (see subsubsection 4.1.2). To optimize
performance, the GridLineTraversal class utilizes static memory allocation upon its
creation. This approach minimizes the overhead associated with dynamic memory

58



allocation during run-time, ensuring that the ray-casting operations can be performed at
the high frequency required by the planner.
For each laser ray, the gridLine function receives the coordinates of the start and
end cells from the PBF. It then computes and returns all cells intersected by the line
connecting these points (GTLine). This set of intersected cells is subsequently passed on
to the Map Manager, which tracks the cells and their occupancies encountered along the
trajectory.

Visualizer

To provide an insight into how the results of the ray casting influenced the value of PBF
for pose improvement and to confirm the correct identification and counting of cells
encountered during the ray casting, a dedicated visualizer was developed.
The Visualizer is capable of displaying the set of cells penetrated during a ray casting
operation for a given position (see Figure 10). This feature was particularly useful for
debugging and fine-tuning the ray-casting process. Furthermore, it publishes messages
that can be visualized with the 3D visualization tool RViz [ROS Wiki, 2018b], showing
the pose and range of the trajectory currently evaluated (see Figure 9). This immediate
visualization was valuable not only for identifying faults but also for comprehending the
spatial interplay between the robot’s pose and the areas analyzed for pose improvement.

Figure 10: Cell Visualizer: The blue marker indicates the laser’s position from which
the ray-casting operation originates. In this visualization, cells with unknown
occupancy are highlighted in red.

59



5.3 Pose Entropy

Integrating new components into the GM framework required a thorough analysis of its
existing structure and functionality.

5.3.1 GMapping Framework and Overview of Modifications

A thorough analysis of data and control flows was conducted to identify optimal integration
points for the EMMI calculation. We specifically focused on the SLAM_Gmapping package
and its key components, particularly the GridSlamProcessor, which manages particle
states and updates the map (see Figure 11).

SLAM_Gmapping
Interface, general management,

creating maps...

GridSlamProcessor
owns particles, performs

SLAM calculations

Particles MotionModel ScanMatcher

Figure 11: Overview of the GMapping package interactions. For more details please
refer to Arce y de la Borbolla [2021]

In the SLAM_Gmapping package, the main program serves as the primary interface for
users, handling overall functionality, and managing interactions with the system. It acts
as a wrapper around the GridSlamProcessor, which performs the core computations of
the SLAM algorithm.

60



5.3.2 Implementation of the New Approach

In this section, we detail the implementation of the novel functionalities introduced in
section 4.2. The following Figure 12 provides an overview of the new functions and
parameters that were integrated to achieve these enhancements.

SlamGMapping
+ publishParticles_ : bool
+ publishAvgMap_ : bool
+ emmiEntropy() : double
+ pubParticles() : void
+ getAvgOcc(Point p) : double
+ pmCallback() :
vector <Particle, OGM, FMP>

GridSlamProcessor

+ saveWeights(): void
+ getNParticles(int): <int>

Particles
+ entropyWeight: double

1
1

1*

Figure 12: Diagram illustrating the newly implemented functions and classes for the
EMMI calculation system. The diagram offers a visual overview of the mod-
ified architecture, highlighting the interconnections and data flow between
components.

Obtaining an accurate representation of the particle weight distribution is feasible only
during scan matching. Consequently, the EMMI calculation was implemented within the
SLAM_Gmapping package to occur whenever a scan update is performed. This ensures
that the entropy calculations are both precise and aligned with the most recent map
data.

Capturing Representative Weights

As highlighted in subsection 4.2.2, one of the primary challenges in the calculation of
pose entropy within the GM framework is the transient nature of the particle weights,
which are updated during resampling.
To address this, a new parameter was introduced into the particle data structure (see
Figure 12). This parameter stores the weight of each particle during the scan matching
phase, ensuring that these values remain accessible for the subsequent EMMI calculation
before being overwritten in the resampling step.

61



During calculation, the stored weights are normalized across all unique particles to
produce a meaningful and representative distribution. This approach ensures that the
entropy calculations accurately reflect the current pose uncertainty and are not skewed
by transient weight changes during resampling.

Figure 13: Particle Publisher Visualization: This image displays the distribution
of particles within the GM algorithm, represented by red arrows where each
arrow’s size corresponds to the particle’s normalized weight. The actual
position of the robot is denoted by the white circle, providing a reference
for assessing the spread and alignment of the particle weights relative to the
robot’s true location. The visualization helps to understand how the SLAM
system perceives and adjusts to environmental data.

Extended Functionalities in GMapping

Besides the functions implemented for enhanced entropy estimation, several other features
were integrated into the GM package extending its functionality:

• Particle Publisher
The Particle Publisher (see Figure 13) enables monitoring and debugging of particle
states by publishing the pose and weight for real-time visualization in RViz. This

62



tool helps to understand the particle distribution and verify the accuracy of pose
entropy calculations.

• Average Map Calculation
This function computes the Expected Map (Average Map) (see Equation 14 ) of
the current particle distribution. By visualizing the averaged maps in RViz (see
Figure 14), we can evaluate the convergence of the SLAM process identifying areas
where the robot’s understanding of the environment is not consistent.

Figure 14: Visualization of the Averaged Map in RViz: This RViz screenshot
shows the averaged probability map generated by the modified GMapping
package. The map aggregates occupancy probabilities across all particles,
highlighting areas with varying certainty. The white circle marks the robot’s
actual position. Grey areas represent unexplored cells, red cells indicate
high occupancy probability, blue and purple denote uncertain occupancy,
and black cells suggest a high likelihood of being empty. Additionally, this
example illustrates the influence of priors from the Full Map Posterior (see
Arce y de la Borbolla [2021]), especially in regions with sparse sensor data.

• Particle and Map Service
The Particle and Map Service enables efficient data access for other ROS com-
ponents. Upon request, the GridSlamProcessor selects and publishes n randomly
sampled particles, including their OGMs and associated poses, for use by external
modules. The service computes the desired maps leveraging multi-threading to
optimize performance and speed. In addition, it supports FMP maps, offering a
comprehensive probabilistic representation of the environment. An example output
can be found in the Appendices (section 8.3).

63



6 Experiments and Evaluation
This chapter examines how effective the modifications introduced to the DWA planner
and the GM package are. We executed tests in several scenarios to verify whether these
improvements truly enhance pose estimation in autonomous navigation.

6.1 Comparison of Planning Strategies

To evaluate the influence on navigation efficiency and pose accuracy, we contrasted our
method with the standard DWA planner and a straightforward strategy designed to
enhance pose estimation.

• DWA
The standard DWA Planner serves as the baseline and is often used in typical
navigation strategies in known environments. It focuses on achieving navigation
objectives efficiently, without functionalities to actively improve pose estimation.

• PBF
The modified DWA planner incorporates the PoseBoost cost function. It assimilates
the certainty of the pose in real time, derived from the modified GMapping package
to balance efficient navigation with the need for accurate pose estimation.

• 360
Given the absence of existing methods that concurrently combine navigation with
optimizing pose certainty, we implemented a straightforward experimental approach.
This technique employs the standard DWA, but augments the navigation routine by
introducing a 360-degree rotation after every meter traveled towards the target. The
purpose of this rotation is to increase the frequency of scan updates periodically.
These additional scan updates are anticipated increase possible scan-matching
operations, enhancing the overall map quality and thereby improving the pose
estimation.

64



6.2 Testing Metrics

To evaluate the effectiveness of planning strategies, we employed several metrics that
capture both quantitative and qualitative aspects of performance. These metrics facilitate
the evaluation of improvements in pose estimation precision, navigation effectiveness,
and system reliability.

• Pose Accuracy:
Measures the Euclidean distance and the angular deviation between the estimated
pose of the robot provided by GM and the ground truth poses. This metric directly
reflects the accuracy of the localization process.

• Expected Map Mean Information:
Used to quantify the certainty of the current pose of the robot and the surrounding
map. A higher EMMI score indicates greater confidence in pose estimation and
map quality (see section 2.5).

• Navigation Efficiency:
Assessed by recording the time taken and the distance traveled to reach the
estimated navigation goal. This metric evaluates how effectively the navigation
strategies reach the goal.

• System Reliability:
Monitors occurrences of navigation failure (i.e., when move_base aborts) that can
arise from incorrect pose estimations or excessive computational demands affecting
system performance. Additionally, test runs that exceed a duration of three minutes
were classified as failures.
By tracking these events, this metric assesses the robustness of the implemented
modifications across various operational conditions.

65



6.3 Experimental Setup

We performed tests in both simulated and real world environments to model varying
conditions.

Real-World
Real-world tests were conducted using a TIAGo robot (see pal-robotics.com), from the
SocRob@Home team Lisboa [2025], nicknamed "Bobby". To mimic sparse environment,
most of the obstacles were cleared from the ISR laboratory test bed (see Figure 15).
For each trial, the robot was positioned at a designated start location and tasked with
navigating to a goal position, evaluating the robustness of navigation and pose estimation
under feature-scarce conditions.

A video recording of a representative test run, where the robot’s behavior and trajectory
can be observed, is available at steigerobin.com/thesis/videos/.

Figure 15: The TIAGo robot “Bobby” in the ISR test bed, which has been cleared of
most obstacles to replicate a sparse environment.

Simulation Setup
All tests in simulation were performed using the Gazebo simulator [Robotics, 2024], with
a TIAGo robot from PAL Robotics. Two custom environments were created within
Gazebo to challenge both localization and mapping capabilities:

66

https://pal-robotics.com/robot/tiago/
https://steigerobin.com/thesis/videos/
https://pal-robotics.com/robot/tiago/


Figure 16: A screenshot of the Gazebo simulator showing the TIAGo robot navigating
the restaurant-like environment. Obstacles include customers, tables, chairs,
and other furniture configured to mirror a typical dining layout.

• Restaurant Environment (Figure 16):
Inspired by the RoboCup@Home restaurant task (see section 1.1), this environment
is designed to mimic a small dining area with tables, chairs, and a bar-like station.
Just as in the original task, the robot tipically starts next to the bar and must
navigate to a designated service point (e.g., near the bar or a customer table),
requiring it to avoid tables, chairs, and other obstacles.

• Subway Station Environment (Figure 17):
Created to simulate a larger, more open public area, this setting features sparse
landmarks and a layout reminiscent of a subway platform or corridor. Here the
robots start and end position were chosen randomly. This scenario helps evaluate
the system’s ability to maintain accurate localization over longer distances.

Parameters and Variables
To improve the generalization of our findings, we predominantly utilized the default
parameter configurations.

Variations from these configurations and parameters newly introduced in this work are
outlined below:

67



• PoseBoost cost function:

· pose_boost_scale: 400
· pose_boost_min_distance: 0.3 meters
· pbf_oscillation_timeout: 2.5 seconds
· pose_boost_distance_after_oscillation: 0.4 meters
· sf: 0.4

• GMapping:

· entropy_threshold: 4 (≈ 150 consistent measurements)
· entropy_radius: 3
· alpha0: 0.0231
· beta0: 0.6156

For the documentation about the FMP parameters (alpha0 and beta0) please refer
to Arce y de la Borbolla [2021].

• Move Base
· sim_time: 5.0 seconds (default: 1.7)

to allow better prediction of potential re-localization actions.
· path_distance_bias: 12.0 (default: 32.0)

to decrease the influence of the global plan on local decision-making, encourag-
ing the selection of more informative rather than merely expedient paths.

• Noisy Movement
To simulate odometry errors in the simulation, random Gaussian noise was added
to the robot’s movements (see section 6.5). The noise, characterized by a mean of
0 and a variance of 0.0175, was applied to both linear and angular velocities. This
was implemented by subscribing to the relevant ROS topic, modifying the motion
commands with the noise, and publishing the updated messages.

All constants in the model were determined empirically through testing. Newly introduced
parameters, along with their roles and usage, are introduced and explained in section 5.1.
For a comprehensive overview of the parameter configurations employed during testing,
please refer to the complete configuration files provided in section 8.2.

68



Figure 17: The second simulated environment, designed to represent a subway station
or similar public area with sparse obstacles and more open space.

Data Collection Methods
The evaluation metrics require a comparison between ground truth poses and estimations
of GM. While obtaining ground truth data is straightforward in simulations, for our
real-world experiments, we utilized an OptiTrack motion capture system [NaturalPoint
Corporation, 2022]. OptiTrack is a high-precision motion tracking solution that uses
infrared cameras to detect reflective markers and calculate their positions in three-
dimensional space. In our setup within the ISR testbed, twelve cameras tracked three
reflective markers mounted on the robot. This configuration ensured accurate tracking of
the robot’s position and orientation, providing reliable ground truth data for comparison
with the estimated poses from the GM algorithm.

69



6.4 Results

In the following sections, we present the results of experiments conducted in both
simulated and real-world environments. Tests were terminated and labeled as failures if
they exceeded three minutes due to large positional errors, or if the navigation module
(move_base) encountered an error. All such aborted runs were excluded from the analyzed
data.

We compare the performance of three distinct planning strategies (see section 6.1):

• DWA: The baseline Dynamic Window Approach (DWA) planner.
• PBF: The improved DWA planner incorporating the Pose Boost Function (PBF).
• 360: The DWA planner supplemented by a simple pose improvement strategy.

Graphical Representations
Bar graphs display the following statistics for the test runs:

• Percentage of navigation failures (i.e., excluded tests) attributed to poor localization.
• Total distance traveled (in meters) until the estimated goal point was reached.
• Final position error (in meters) when the estimated goal was reached (in Appendix).
• Time required (in seconds) to reach the destination (in Appendix).

Line graphs illustrate changes in different metrics throughout the trajectory, with the
x-axis showing the percentage of completion. The y-axis displays the mean values and
variability of: the Euclidean/Angular error (in meters/degrees) between the estimated
and true positions as well as the EMMI value (in Appendix).

70



Real World Results

Figure 18: This figure shows the evolution of the Euclidean distance error (in meters)
between the estimated and the actual position across 50 experiments con-
ducted in our Real World environment (see subsubsection 6.3).

Figure 19: This figure compares two metrics from our Real World experiments: the
percentage of failed tests (left), and the average distance traveled to the
estimated goal position (right) for tests that successfully completed. Dis-
tances are reported in meters.

71



Simulation Results

Figure 20: This figure shows the evolution of the Euclidean distance error (in meters)
between the estimated and actual positions across 75 simulation experiments
(25 in the restaurant-world (see Figure 16) and 50 in the station-world (see
Figure 17)). In some cases, large positional errors caused runs to last
indefinitely. Whenever an algorithm exceeded three minutes, the test was
aborted and labeled as a failure. These aborted runs were excluded from
the plots.

Figure 21: This figure compares two metrics from our simulation experiments: the
percentage of failed tests (left), and the average distance traveled to the
estimated goal position (right) for tests that successfully completed. Dis-
tances are reported in meters.

72



6.5 Discussion

• Overall performance: The experimental results reveal distinct performance
characteristics across the three navigation strategies tested. The PBF-enhanced
DWA planner demonstrates superior pose accuracy compared to the baseline DWA
and the simple 360-degree turn strategy. Although the PBF approach takes longer
on average to reach the goal, its ability to decrease navigation failures underscores
its efficacy in maintaining robust pose estimation even in challenging navigation
scenarios.

• Discovered area and EMMI: The additional revisiting actions of the PBF
strategy increase the distance traveled, but also lead to a more expansive exploration
of the map. Consequently, the EMMI values under the PBF approach may appear
to indicate a worse pose estimation than the baseline DWA (see Figure 23 & 25),
because the robot uncovers a larger, less-measured region of the environment. While
lower EMMI values can indicate less-refined mapping in new areas, it also suggests
that the robot acquires information about previously unknown parts of the map.

• Stability: The baseline DWA relies heavily on the quality of local odometry, which
can vary significantly due to the RBPF resampling effects. This can result in
large fluctuations in pose accuracy: repeating the same run often yields highly
inconsistent outcomes. In contrast, the PBF approach mitigates these fluctuations
by proactively verifying the pose through revisits, leading to more stable performance
and consistently lower variance in the experimental results.

• Analysis of pose improvement strategies: The simple pose improvement strat-
egy, designed to periodically improve pose accuracy through deliberate orientation
changes, proved less effective than anticipated. The under-performance of this
strategy highlights the complexity of pose improvement; frequent sensor updates
alone do not guarantee better overall localization if the underlying approach does
not strategically re-align the robot with previously mapped features.

• Performance in Different Scenarios: In environments with longer travel dis-
tances or more complex routes, situations where odometry errors tend to accumulate,
PBF proofs the best results in comparison to the baseline DWA approach. If the
destination is close to the robot’s starting position or lies directly ahead, the base-
line DWA sometimes outperformed PBF, as unnecessary detours add noise and

73



uncertainty. Hence, the enhanced planner is particularly beneficial in scenarios
where odometry errors are likely to accumulate due to non-trivial trajectories or
unreliable odometry.

• Behavioral Insights Observations from our test recordings (see steigerobin.com
/thesis/videos/) indicate that the PBF strategy introduces a behavioral shift: the
robot actively confirms its pose by referring to previously mapped areas whenever
it detects uncertainty. This behavior mimics a ’confirmation’ strategy where the
robot reassures its localization by aligning its current sensor readings with the
known map features provoking scan-matching, thus effectively utilizing its historical
data to mitigate present uncertainties.

• Impact of Ground-Truth Odometry in Simulation: During early sim-
ulation trials, the PBF-enhanced planner sometimes performed worse than the
baseline DWA. This discrepancy, especially relative to the real-world findings (see
subsubsection 6.4), arose because the simulator provided perfect ground-truth
odometry, while only GM injected artificial noise during the particle updates. Un-
der these idealized conditions, any additional movement can be counterproductive,
like revisiting actions from PBF. However, this setup is unrealistic for real-world
applications where odometry errors are inevitable. After introducing realistic noise
(see subsubsection 6.3), the revisiting actions of the PBF approach became effective,
aligning more closely with the results observed in physical environments.

Conclusion
The analysis clearly demonstrates the effectiveness of integrating targeted pose improve-
ment mechanisms into autonomous navigation planning.

While the PBF approach slightly increases the time and distance required to reach
the goal, it significantly reduces failures and fosters more reliable localization, making
it especially suitable for environments where odometry errors are likely to occur. By
covering a larger portion of the map, PBF provides richer environmental data, which
can be critical for robust navigation in complex scenarios. Consequently, adopting
pose improvement strategies such as PBF can yield tangible benefits in reliability and
performance for autonomous robotic systems.

74

https://steigerobin.com/thesis/videos/
https://steigerobin.com/thesis/videos/


7 Conclusion and Future Work
This chapter revisits the contributions delineated at the outset of the thesis (see section 1.3)
and evaluates the methodologies employed to realize them. In addition, it examines
potential research directions that could extend this study.

7.1 Realization of Contributions

The objective of this thesis was to make an impact in the domain of SLAM by improv-
ing autonomous navigation in unknown environments. In the following we detail the
implementation of the proposed contributions throughout the research process.

1. Advancements in the SLAM-GMapping Method:
• The EMMI approach was customized to meet our particular requirements,

resulting in the creation and implementation of a novel method for a fast,
stable and reliable estimation of pose certainty.

• Integrating Full Map Posteriors into the EMMI computation improved both
the accuracy of the map and the precision of the pose certainty metrics.

• The ability to publish individual particles along with their maps enhanced
analysis and debugging, by offering comprehensive insights into the SLAM
framework, and serves as a valuable asset for future developments.

• Generating an averaged map effectively combines environmental data, providing
a more accurate representation of the probability field of the current particle
distribution and optimizes the decision-making processes.

2. Advancements in Dynamic DWA Planning:
• The integration of the PoseBoost cost function within the DWA planner allows

real-time modification of the robot’s local trajectory enhancing pose accuracy.
• Achieving a balance between reaching the goal and ensuring pose reliability,

leveraging the GM pose precision metric, facilitates fast but robust navigation.

75



• The pose improvement actions proofed to lead to a more informative map and
a notable reduction in navigation errors.

3. Empirical Validation and Practical Applications:
• Experimental evaluations in both virtual simulations and real-world envi-

ronments validated the proposed improvements, demonstrating noticeable
enhancements in navigation accuracy.

• The practical applications of these advancements were confirmed during real-
world tests, showing their potential for broad use in service robotics and
autonomous systems.

7.2 Challenges and Limitations of the Study

Despite the promising outcomes, several limitations and challenges were encountered:

1. Time Efficiency: The modified planner often requires more time to reach the
goal compared to the standard DWA planner. This increase in travel time can be
problematic in scenarios where time efficiency is crucial. An optimization of the
PBF parameters or strategy may be necessary to improve time efficiency without
compromising pose accuracy.

2. Reliability of Odometry vs. Scan Measurements: The PBF aims to enhance
pose estimation by encouraging the robot to revisit previously mapped areas to
collect more scan data. However, this approach assumes that the scan data is
more reliable than odometry. In cases where odometry is more accurate, re-visiting
actions based on scan data could worsen the pose estimate rather than improve it.

3. Navigation in Short-Range Environments: In scenarios where the destination
is nearby, the direct route generally minimizes odometry errors. However, the
PBF may prompt the robot to choose a longer path in an effort to improve pose
certainty, inadvertently introducing additional odometry errors. In such cases, the
extra movement can offset the benefits of enhanced pose estimation, ultimately
reducing the pose certainty.

76



7.3 Future Research Directions

The advancements presented in this study underscore the potential for future work
in the fields of SLAM and autonomous navigation. Building on the challenges and
limitations discussed in in the previous section, subsequent research may focus on refining
the approaches introduced in this thesis or investigating entirely new ideas for robotic
navigation and mapping:

• Refinement of Pose Certainty Feedback: While the feedback mechanism
adjusting the impact of PBF has proven effective, optimizing its parameters could
significantly enhance performance. Further refinement of the pose certainty estima-
tion is also possible, which could lead to even more reliable navigation decisions.

• Assessment of Necessity for PBF Actions: As highlighted in section 7.2,
there are scenarios where the standard DWA planner may outperform the new PBF
version, especially when direct routes are short or odometry is particularly reliable.
Future research could focus on developing algorithms that autonomously decide
when to bypass pose improvement actions, perhaps through advanced parameter
tuning or real-time environmental assessment.

• Pose Improvement Potential: Current methods estimate the potential for
pose improvement by considering the number of occupied cells during a ray-cast.
This approach could be further refined by incorporating the informational quality
of surfaces. For instance, distinguishing between flat walls, which offer limited
localization cues, and more complex structures that enhance pose estimation.

• Optimization of Revisiting Strategies: Continually revisiting the same areas
can be redundant. A novel approach could involve detecting and recording areas
that have been used for re-localization, assigning them a lower priority for future
revisiting actions. This would help in diversifying the areas used for enhancing
pose certainty and prevent over-reliance on specific spots.

• Cross-Platform Integration: Testing the integration of the PBF with various
planners and SLAM systems across different robotic platforms could provide insight
into its adaptability and effectiveness in a wider range of applications. This could
facilitate the development of more versatile and robust autonomous navigation
systems.

77



7.4 Concluding Remarks

This thesis addresses the relatively under explored challenge of balancing goal-directed
navigation with the improvement of pose estimation in unknown environments. By
introducing dynamic modifications to the DWA planner, particularly by incorporating
the PoseBoost cost function and advanced mapping techniques (FMP), this research
demonstrates improvements in both robotic pose precision and navigation reliability.
These enhancements validate the efficiency of adaptive pose correction mechanisms,
establishing them as essential components for precise autonomous navigation.

Experimentation and validation processes, conducted in simulated and real-world sce-
narios, confirm that the proposed approaches considerably enhance the robustness and
efficiency of autonomous systems, demonstrating their practicality in challenging envi-
ronments. These advancements not only expand the capabilities of robotic navigation,
but also create advancements for more reliable robotic assistants.

Looking ahead, the contributions of this thesis suggest promising directions for further
research, with applications in various areas of robotics. The insights provided here are
intended to inspire further innovation and set the stage for more adaptable, reliable, and
efficient autonomous systems.

78



8 Appendices

8.1 Remaining Results

In this section the remaining results of the conducted Experiments and Evaluation will
be presented. The following figures only include data from the tests which successfully
reached the goal. In simulation any test run which lasted longer than three minutes was
also declared as not successful.

Real World

Figure 22: The figure shows results of the successful tests among the 50 tests conducted
in the ISR-Testbed (see Figure 15). On the left, the final positional error
is shown, measured as the Euclidean distance (in meters) between the real
position and the estimated goal position. This distance indicates how far
the robot was from the goal. On the right, the average time (in seconds)
required for the robot to reach the estimated goal position is displayed.

79



Figure 23: The left graph shows how the error in orientation error, measured in degrees
(based on Euler angles), evolves between the estimated and actual orienta-
tions in the experiments conducted at the ISR Testbed.
The figure on the right illustrates the evolution of the EMMI value. Initial
zero values can be disregarded, as the entropy calculation had not yet
commenced. Data of tests which did not reach the goal successfully were
excluded.

Simulation

Figure 24: This figure shows results of the successful tests among the 75 tests conducted
in our simulation environments (see subsubsection 6.3). On the left, the final
positional error is shown, measured as the Euclidean distance (in meters)
between the real position and the estimated goal position. This distance
indicates how far the robot was from the goal. On the right, the average
time (in seconds) required for the robot to reach the estimated goal position
is displayed.

80



Figure 25: The figure on the left shows how the orientation error, measured in degrees
(Euler angles), evolves between the estimated and actual orientations in the
experiments conducted in the simulation environments. The graph on the
right illustrates the evolution of the EMMI value in simulation experiments,
Initial zero values can be disregarded, as the entropy calculation had not
yet commenced.

8.2 Experiment Configuration

Complete ROS configuration files used for our experiments. Default parameters are not
listed.

DWA-Planner Parameters

1 base_local_planner : dwa_local_planner / DWAPlannerROS
2

3 DWAPlannerROS :
4 acc_lim_th : 0.05
5 acc_lim_x : 0.05
6 acc_lim_y : 0.0
7

8 max_vel_x : 0.25
9 min_vel_x : 0.0

10

11 max_vel_trans : 0.25
12 min_vel_trans : 0.0
13

14 max_vel_theta : 0.5
15 min_vel_theta : 0.0

81



16

17 sim_time : 5.0
18 sim_granularity : 0.25
19 controller_frequency : 0.75
20

21 path_distance_bias : 12
22

23 oscillation_reset_dist : 0.1
24

25 scaling_speed : 1.0
26

27 vx_samples : 20
28 vy_samples : 0
29 vtheta_samples : 30
30

31 xy_goal_tolerance : 0.2
32 yaw_goal_tolerance : 0.2
33

34 # New PBF parameters
35

36 # Factor to adjust impact of PBF
37 pose_boost_scale : 400
38

39 # If PBF finds trajectories ending closer
40 # trajectories get rated with worst PBF cost
41 pose_boost_min_distance : 0.25
42

43 # Visualization in RViz of area being analyzed in PBF
44 pose_boost_visualize_area : true
45

46 # Visualization of single cells being
47 # encountered in ray - casting operation
48 pose_boost_visualize_cells : false
49

50 # Laser topic used for gathering laser information
51 # (angle , number of scans ...)
52 pose_boost_laser_topic : " scan_front "
53

54 # Minimum distance robot has to travel to reactivate PBF
55 # after oscillation was detected
56 pose_boost_distance_after_oscillation : 0.4
57 # Factor used to calculate the max_occ_cells
58 max_occ_sf : 0.4

Listing 8.1: local_planner.yaml

82



MoveBase Parameters

1 planner_frequency : 2.0
2 planner_patience : 0.1
3

4 controller_frequency : 10.0
5 controller_patience : 3.0
6

7 oscillation_timeout : 10.0
8 oscillation_distance : 0.2
9

10 # New PBF parameters
11

12 # If oscillation is detected PBF gets
13 # deactivated after ...
14 oscillation_timeout_pose_boost : 2.5

Listing 8.2: move_base.yaml

GMapping Parameters

1 base_frame : base_footprint
2

3 map_update_interval : 1.0
4 maxUrange : 6
5 maxRange : 6
6 sigma : 0.003
7 lstep : 0.05
8 astep : 0.05
9

10 linearUpdate : 0.1
11 angularUpdate : 0.2
12

13 # Parameters specifically for FMP - Mapping :
14

15 publishRawAndProbMap : true
16

17 alpha0 : 0.023154724941509084
18 beta0: 0.6156273138207687
19

20 # Pose Boost Parameters :
21

22 # Normalization factor for FMP - Entropy
23 # 4 ~ 150 consistent measurements

83



24 best_entropy_threshold : 4
25

26 # Publishing the averaged map (over all particles )
27 publishAvgMap : false
28

29 # Publishing pose and weight of single particles .
30 publishParticles : true
31

32 # Factor to calculate radius to calculate EMMI:
33 emmi_radius : 3

Listing 8.3: gmapping.yaml

8.3 Particles and Maps Service

Example output when calling the Particle and Map Service (see subsubsection 5.3.2)

1 admin :~ $ rosservice call / particles_and_maps " n_particles :
2 data: 3"
3

4 p_poses :
5 -
6 position :
7 x: 22.611448397393296
8 y: -1.26666752479945
9 z: 0.0

10 orientation :
11 x: 0.0
12 y: 0.0
13 z: 0.9398000977226229
14 w: 0.3417247083846126
15 -
16 position :
17 x: 22.61096903419241
18 y: -1.2685044173386688
19 z: 0.0
20 orientation :
21 x: 0.0
22 y: 0.0
23 z: 0.9398808547943723
24 w: 0.34150253116338697
25 -
26 position :

84



27 x: 22.61232260228084
28 y: -1.2679536840141359
29 z: 0.0
30 orientation :
31 x: 0.0
32 y: 0.0
33 z: 0.9397988637075507
34 w: 0.3417281021133563
35 p_weights :
36 -
37 data: 0.3581606212647417
38 -
39 data: 0.31146603999753597
40 -
41 data: 0.33037333873772234
42 probability_maps :
43 -
44 header :
45 seq: 0
46 stamp: ...........

Listing 8.4: Particle and Map Service Output

85



Bibliography
Muhammad Farhan Ahmed, Khayyam Masood, Vincent Fremont, and Isabelle Fantoni.

Active slam: A review on last decade. Sensors, 23:8097, 2023. doi: 10.3390/s23198097.

José Arce y de la Borbolla. Full map posterior slam in ros. https://github.com/
joseab10/FMP_gmapping/blob/master/doc/Report.pdf, 2021. Accessed on: Aug.
28, 2024.

Jose Luis Blanco, J.-A Fernández-Madrigal, and Javier González-Jiménez. A novel
measure of uncertainty for mobile robot slam with rao blackwellized particle filters. I.
J. Robotic Res., 27:73–89, 01 2008. doi: 10.1177/0278364907082610.

J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4(1):25–30, 1965. doi: 10.1147/sj.41.0025.

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
Neira, Ian D. Reid, and John J. Leonard. Simultaneous localization and mapping:
Present, future, and the robust-perception age. CoRR, abs/1606.05830, 2016. URL
http://arxiv.org/abs/1606.05830.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan
Salakhutdinov. Learning to explore using active neural SLAM. CoRR, abs/2004.05155,
2020. URL https://arxiv.org/abs/2004.05155.

Eugen Dedu. Bresenham-based supercover line algorithm. http://eugen.dedu.free.
fr/projects/bresenham/, 2001. Accessed on: Aug. 28, 2024.

A. Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. Rao-blackwellised
particle filtering for dynamic bayesian networks. In Conference on Uncertainty in
Artificial Intelligence, 2000. URL https://api.semanticscholar.org/CorpusID:
2948186.

Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57, 1989. doi: 10.1109/2.30720.

86

https://github.com/joseab10/FMP_gmapping/blob/master/doc/Report.pdf
https://github.com/joseab10/FMP_gmapping/blob/master/doc/Report.pdf
http://arxiv.org/abs/1606.05830
https://arxiv.org/abs/2004.05155
http://eugen.dedu.free.fr/projects/bresenham/
http://eugen.dedu.free.fr/projects/bresenham/
https://api.semanticscholar.org/CorpusID:2948186
https://api.semanticscholar.org/CorpusID:2948186


Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach to
collision avoidance. Robotics & Automation Magazine, IEEE, 4:23 – 33, 04 1997. doi:
10.1109/100.580977.

Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective resampling.
In Improving Grid-based SLAM with Rao-Blackwellized Particle Filters By Adaptive
Proposals and Selective Resampling, pages 2432–2437, 01 2005. doi: 10.1109/ROBOT.
2005.1570477.

Justin Hart, Alexander Moriarty, Katarzyna Pasternak, Johannes Kummert, Alina
Hawkin, Vanessa Hassouna, Juan Diego Pena Narvaez, Leroy Ruegemer, Leander von
Seelstrang, Peter Van Dooren, Juan Jose Garcia, Akinobu Mitzutani, Yuqian Jiang,
Tatsuya Matsushima, and Riccardo Polvara. Robocup@home 2024: Regulations on the
organization of the competition. https://github.com/RoboCupAtHome/RuleBook/
releases/tag/2024.1, 2024.

ISR Lisboa. Socrob@home. https://irs-group.github.io/socrobwebsite/, 2025.
Accessed on: Jan. 14, 2025.

Lukas Luft, Alexander Schaefer, Tobias Schubert, and Wolfram Burgard. Closed-form
full map posteriors for robot localization with lidar sensors. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), page 6678–6684.
IEEE, September 2017. doi: 10.1109/iros.2017.8206583. URL http://dx.doi.org/
10.1109/IROS.2017.8206583.

Lukas Luft, Alexander Schaefer, Tobias Schubert, and Wolfram Burgard. Detecting
changes in the environment based on full posterior distributions over real-valued
grid maps. IEEE Robotics and Automation Letters, 3(2):1299–1305, April 2018. doi:
10.1109/LRA.2018.2797317.

D.Q. Mayne, James Rawlings, Christopher Rao, and P. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36:789–814, 06 2000. doi:
10.1016/S0005-1098(99)00214-9.

M. Montemerlo and S. Thrun. Fastslam 2.0: An improved particle filtering algorithm for
simultaneous localization and mapping that provably converges. IEEE Rob. Autom.,
13:99–110, 01 2007. doi: 10.1007/978-3-540-46402-0_4.

NaturalPoint Corporation. Optitrack wiki. https://v21.wiki.optitrack.com/index.
php?title=OptiTrack_Wiki, 2022. Accessed on: Nov. 18, 2024.

87

https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1
https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1
https://irs-group.github.io/socrobwebsite/
http://dx.doi.org/10.1109/IROS.2017.8206583
http://dx.doi.org/10.1109/IROS.2017.8206583
https://v21.wiki.optitrack.com/index.php?title=OptiTrack_Wiki
https://v21.wiki.optitrack.com/index.php?title=OptiTrack_Wiki


S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control. In
[1993] Proceedings IEEE International Conference on Robotics and Automation, pages
802–807 vol.2, 1993. doi: 10.1109/ROBOT.1993.291936.

Maria Ribeiro and Isabel Ribeiro. Kalman and extended kalman filters: Concept,
derivation and properties, 2004. Instituto Superior Técnico.

RoboCup@Home. Available online. https://athome.robocup.org/, 2024. Accessed on:
Sep. 12, 2024.

Open Robotics. Available online:. https://gazebosim.org/about, 2024. Accessed on:
Oct. 09, 2024.

ROS Wiki. Ros introduction. http://wiki.ros.org/ROS/Introduction, 2018a. Ac-
cessed on: Aug. 25, 2024.

ROS Wiki. Rviz. http://wiki.ros.org/rviz, 2018b. Accessed on: Jan. 15, 2025.

ROS Wiki. Ros services and actions. http://wiki.ros.org/move_base, 2020. Accessed
on: Aug. 26, 2024.

Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. Coastal navigation-
mobile robot navigation with uncertainty in dynamic environments. In Coastal
navigation-mobile robot navigation with uncertainty in dynamic environments, volume 1,
pages 35 – 40 vol.1, 02 1999. ISBN 0-7803-5180-0. doi: 10.1109/ROBOT.1999.769927.

Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. Timed-elastic-bands for
time-optimal point-to-point nonlinear model predictive control. In 2015 European
Control Conference (ECC), pages 3352–3357, 2015. doi: 10.1109/ECC.2015.7331052.

Robert Sim and Nicholas Roy. Global a-optimal robot exploration in slam. In Proceedings
of the 2005 IEEE International Conference on Robotics and Automation, pages 661–666,
2005. doi: 10.1109/ROBOT.2005.1570193.

Cyrill Stachniss. Grid mapsn, 2012a. URL http://ais.informatik.uni-freiburg.
de/teaching/ws12/mapping/pdf/slam11-gridmaps.pdf. AIS - Robot Mapping -
WS20/21 Accessed on: Nov. 14, 2024.

Cyrill Stachniss. Short introduction to particle filters and monte carlo localization,
2012b. URL http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/
pdf/slam09-particle-filter.pdf. AIS - Robot Mapping - WS20/21 Accessed on:
Nov. 14, 2024.

88

https://athome.robocup.org/
https://gazebosim.org/about
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/rviz
http://wiki.ros.org/move_base
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam11-gridmaps.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam11-gridmaps.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam09-particle-filter.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam09-particle-filter.pdf


Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Information gain-based explo-
ration using rao-blackwellized particle filters, 06 2005.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press,
Cambridge, MA, 2005. ISBN 9780262201629. Accessed on: Nov. 08, 2024. ProQuest
Ebook Central.

Hei Tse. The definition and application of entropy. SHS Web of Conferences, 144:01016,
08 2022. doi: 10.1051/shsconf/202214401016.

Oleksii Zhelo, Jingwei Zhang, Lei Tai, Ming Liu, and Wolfram Burgard. Curiosity-driven
exploration for mapless nhttps://irs-group.github.io/socrobwebsite/avigation with deep
reinforcement learning, 2018. URL https://arxiv.org/abs/1804.00456.

89

https://arxiv.org/abs/1804.00456

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Simultaneous Localization and Mapping
	2.2 Particle Filters
	2.3 Map Representation
	2.4 Entropy in Particle Filters
	2.5 Pose Entropy
	2.6 ROS Navigation Stack
	2.6.1 Local Planners


	3 State-of-the-Art
	3.1 Active SLAM
	3.2 Approaches in RoboCup@Home
	3.3 Towards a Combined Approach

	4 Adaptive Local Planning for Improved Pose Certainty in Active SLAM
	4.1 Pose Improvement
	4.1.1 Strategies for Pose Improvement
	4.1.2 The new PoseBoost cost function

	4.2 Pose Entropy
	4.2.1 Current Approach in GMapping
	4.2.2 Limitations and Rationale for Improvement
	4.2.3 Review of Alternative Approaches
	4.2.4 Expected Map Mean Information

	4.3 Balancing Goal-Directed Navigation and Pose Improvement
	4.3.1 System and Variable Analysis
	4.3.2 Adaptive Weighting Mechanism
	4.3.3 Managing conflicting objectives
	4.3.4 Final PoseBoost cost function Output
	4.3.5 Full DWA Optimization Formulation


	5 Implementation
	5.1 System Configuration and Parameter Integration
	5.2 Pose Improvement
	5.2.1 GMapping Framework and Requirements
	5.2.2 Implementation of Components

	5.3 Pose Entropy
	5.3.1 GMapping Framework and Overview of Modifications
	5.3.2 Implementation of the New Approach


	6 Experiments and Evaluation
	6.1 Comparison of Planning Strategies
	6.2 Testing Metrics
	6.3 Experimental Setup
	6.4 Results
	6.5 Discussion

	7 Conclusion and Future Work
	7.1 Realization of Contributions
	7.2 Challenges and Limitations of the Study
	7.3 Future Research Directions
	7.4 Concluding Remarks

	8 Appendices
	8.1 Remaining Results
	8.2 Experiment Configuration
	8.3 Particles and Maps Service

	Bibliography

